scholarly journals Identification of functional variants for plateletCD36expression by Massively Parallel Reporter Assay

2019 ◽  
Author(s):  
Namrata Madan ◽  
Andrew R. Ghazi ◽  
Xianguo Kong ◽  
Edward S. Chen ◽  
Chad A. Shaw ◽  
...  

AbstractCD36 is a platelet membrane glycoprotein whose engagement with oxidized low-density lipoprotein (oxLDL) results in platelet activation. The CD36 gene has been associated with platelet count, platelet volume, as well as lipid levels and CVD risk by genome-wide association studies. Platelet CD36 expression levels have been shown to be associated with both the platelet oxLDL response and an elevated risk of thrombo-embolism. Several genomic variants have been identified as associated with platelet CD36 levels, however none have been conclusively demonstrated to be causative. We screened 81 expression quantitative trait loci (eQTL) single nucleotide polymorphisms (SNPs) associated with plateletCD36expression by a Massively Parallel Reporter Assay (MPRA) and analyzed the results with a novel Bayesian statistical method. Ten eQTLs located in a 35kb region upstream of theCD36transcriptional start site demonstrated significant transcription shifts between their minor and major allele in the MPRA assay. Of these, rs2366739 and rs1194196, separated by only 20bp, were confirmed by luciferase assay to alter transcriptional regulation. In addition, electromobility shift assays demonstrated differential DNA:protein complex formation between the two alleles of this locus. Furthermore, deletion of the genomic locus by CRISPR/Cas9 in K562 cells results in upregulation of CD36 transcription. These data indicate that we have identified a variant that regulates expression ofCD36, which in turn affects platelet function. To assess the clinical relevance of our findings we used the PhenoScanner tool, which aggregates large scale GWAS findings; the results reinforce the clinical relevance of our variants and the utility of the MPRA assay. The study demonstrates a generalizable paradigm for functional testing of genetic variants to inform mechanistic studies, support patient management and develop precision therapies.Author SummaryPlatelets are anucleate cells that are best known as regulators of vascular hemostasis and thrombosis but also play important roles in cancer, angiogenesis, and inflammation. CD36 is a platelet surface marker that can activate platelet in response to oxidized low density lipoprotein (oxLDL). CD36 has been associated with numerous cardiovascular traits in human including blood lipid levels, platelet count, and cardiovascular disease prevalence in human genetic studies. Human variability in platelet CD36 levels are associated with the platelet response to oxLDL. However, the genetic mechanisms responsible for the variability of CD36 levels are unknown. We examined 81 genetic variants associated withCD36levels for functionality using a high-throughput assay. Of the ten variants that were identified in that assay, one doublet, rs2366739 and rs1194196, were confirmed using additional molecular and cellular assays. Deletion of the genomic region containing rs2366739 and rs1194196 resulted in overexpression ofCD36in a cell culture system. This finding indicates a control locus which can serve as a potential target in modulating CD36 expression and altering platelet function in cardiovascular disease.

2011 ◽  
Vol 96 (9) ◽  
pp. E1496-E1501 ◽  
Author(s):  
Jan-Wilhelm Kornfeld ◽  
Aaron Isaacs ◽  
Veronique Vitart ◽  
J. Andrew Pospisilik ◽  
Thomas Meitinger ◽  
...  

Abstract Context: Known genetic variants influencing serum lipid levels do not adequately account for the observed population variability of these phenotypes. The GH/signal transducers and activators of transcription (STAT) signaling pathway is an evolutionary conserved system that exerts strong effects on metabolism, including that of lipids. Research Design and Methods: We analyzed the association of 11 single-nucleotide polymorphisms (SNP) spanning the STAT5B/STAT5A/STAT3 locus with serum lipid levels in six European populations (n = 5162 nondiabetic individuals). Results: After adjustment for age, sex, alcohol use, smoking, and body mass index, we identified STAT5B variants (rs8082391 and rs8064638) in novel association with total cholesterol (TC; P = 0.001 and P = 0.002) and low-density lipoprotein cholesterol (P = 0.002 and P = 0.004) levels. The minor alleles of these single-nucleotide polymorphisms were significantly enriched in hyperlipidemic individuals across the six discovery populations (P = 0.004 and P = 0.006). In transgenic mice deficient for hepatic STAT5A and STAT5B, reduced serum TC levels coincided with reduced hepatic cholesterol biosynthesis as demonstrated using gene expression profiling and pathway enrichment analysis. Conclusions: Genetic variants in STAT5B are associated with TC and low-density lipoprotein cholesterol levels among six populations. Mechanistically, STAT5B transcriptionally regulates hepatic cholesterol homeostasis.


Nephron ◽  
2020 ◽  
Vol 144 (7) ◽  
pp. 331-340
Author(s):  
Muzamil Olamide Hassan ◽  
Raquel Duarte ◽  
Caroline Dickens ◽  
Therese Dix-Peek ◽  
Sagren Naidoo ◽  
...  

2016 ◽  
Vol 291 (33) ◽  
pp. 16977-16989 ◽  
Author(s):  
Miao Yu ◽  
Meixiu Jiang ◽  
Yuanli Chen ◽  
Shuang Zhang ◽  
Wenwen Zhang ◽  
...  

Macrophage CD36 binds and internalizes oxidized low density lipoprotein (oxLDL) to facilitate foam cell formation. CD36 expression is activated by peroxisome proliferator-activated receptor γ (PPARγ). Tamoxifen, an anti-breast cancer medicine, has demonstrated pleiotropic functions including cardioprotection with unfully elucidated mechanisms. In this study, we determined that treatment of ApoE-deficient mice with tamoxifen reduced atherosclerosis, which was associated with decreased CD36 and PPARγ expression in lesion areas. At the cellular level, we observed that tamoxifen inhibited CD36 protein expression in human THP-1 monocytes, THP-1/PMA macrophages, and human blood monocyte-derived macrophages. Associated with decreased CD36 protein expression, tamoxifen reduced cellular oxLDL accumulation in a CD36-dependent manner. At the transcriptional level, tamoxifen decreased CD36 mRNA expression, promoter activity, and the binding of the PPARγ response element in CD36 promoter to PPARγ protein. Tamoxifen blocked ligand-induced PPARγ nuclear translocation and CD36 expression, but it increased PPARγ phosphorylation, which was due to that tamoxifen-activated ERK1/2. Furthermore, deficiency of PPARγ expression in macrophages abolished the inhibitory effect of tamoxifen on CD36 expression or cellular oxLDL accumulation both in vitro and in vivo. Taken together, our study demonstrates that tamoxifen inhibits CD36 expression and cellular oxLDL accumulation by inactivating the PPARγ signaling pathway, and the inhibition of macrophage CD36 expression can be attributed to the anti-atherogenic properties of tamoxifen.


Sign in / Sign up

Export Citation Format

Share Document