scholarly journals Redundant SCARECROW genes pattern distinct cell layers in roots and leaves of maize

2019 ◽  
Author(s):  
Thomas E. Hughes ◽  
Olga V. Sedelnikova ◽  
Hao Wu ◽  
Philip W. Becraft ◽  
Jane A. Langdale

ABSTRACTThe highly efficient C4 photosynthetic pathway is facilitated by ‘Kranz’ leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here we demonstrate that in the C4 monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeolog ZmSCR1h. ZmSCR1 and ZmSCR1h transcripts accumulate in ground meristem cells of developing leaf primordia and in Zmscr1;Zmscr1h mutant leaves, most veins are separated by one rather than two mesophyll cells; many veins have sclerenchyma above and/or below instead of mesophyll cells; and supernumerary bundle sheath cells develop. The mutant defects are unified by compromised mesophyll cell development. In addition to Kranz defects, Zmscr1;Zmscr1h mutants fail to form an organized endodermal layer in the root. Collectively, these data indicate that ZmSCR1 and ZmSCR1h redundantly regulate cell-type patterning in both leaves and roots of maize. Leaf and root pathways are distinguished, however, by the cell layer in which they operate – mesophyll at a two-cell distance from leaf veins versus endodermis immediately adjacent to root vasculature.Summary statementTwo duplicated maize SCARECROW genes control the development of the endodermis in roots and the mesophyll in leaves

Development ◽  
1998 ◽  
Vol 125 (10) ◽  
pp. 1815-1822 ◽  
Author(s):  
E.A. Kinsman ◽  
K.A. Pyke

Bundle sheath cells form a sheath around the entire vascular tissue in Arabidopsis leaves and constitute a distinct leaf cell type, as defined by their elongate morphology, their position adjacent to the vein and by differences in their chloroplast development compared to mesophyll cells. They constitute about 15% of chloroplast-containing cells in the leaf. In order to identify genes which play a role in the differential development of bundle sheath and mesophyll cell chloroplasts, a screen of reticulate leaf mutants of Arabidopsis was used to identify a new class of mutants termed dov (differential development of vascular-associated cells). The dov1 mutant clearly demonstrates a cell-specific difference in chloroplast development. Mutant leaves are highly reticulate with a green vascular pattern. The underlying bundle sheath cells always contain normal chloroplasts, whereas chloroplasts in mesophyll cells are abnormal, reduced in number per cell and seriously perturbed in morphology at the ultrastructural level. This demonstrates that differential chloroplast development occurs between the bundle sheath and mesophyll cells in the Arabidopsis leaf.


1971 ◽  
Vol 49 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Gary E. Mellor ◽  
E. B. Tregunna

The vascular bundle of leaves with the C4-pathway of photosynthesis is usually surrounded by two concentric chlorophyllous cell layers: an outer mesophyll layer and an inner bundle sheath layer. The localization of the nitrate-assimilating enzymes, nitrate reductase, nitrite reductase, and glutamate dehydrogenase in Zea mays, Gomphrena globosa, and Sorghum sudanense was studied by differential grinding. Nitrate reduction to nitrite appears to occur primarily in mesophyll cells. The nitrate content of the mesophyll cells was much higher than the nitrate content of the bundle sheath cells. The distribution of nitrite reductase seemed to be related to the presence of chloroplasts with grana. Ammonia incorporation into organic compounds by glutamate dehydrogenase was localized in the bundle sheath cells.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Ghulam Mustafa ◽  
Muhammad Sarwar Khan

We report here plastid transformation in sugarcane using biolistic transformation and embryogenesis-based regeneration approaches. Somatic embryos were developed from unfurled leaf sections, containing preprogrammed progenitor cells, to recover transformation events on antibiotic-containing regeneration medium. After developing a proficient regeneration system, the FLARE-S (fluorescent antibiotic resistance enzyme, spectinomycin and streptomycin) expression cassette that carries species-specific homologous sequence tails was used to transform plastids and track gene transmission and expression in sugarcane. Plants regenerated from streptomycin-resistant and genetically confirmed shoots were subjected to visual detection of the fluorescent enzyme using a fluorescent stereomicroscope, after genetic confirmation. The resultant heteroplasmic shoots remained to segregate on streptomycin-containing MS medium, referring to the unique pattern of division and sorting of cells in C4 monocotyledonous compared to C3 monocotyledonous and dicotyledonous plants since in sugarcane bundle sheath and mesophyll cells are distinct and sort independently after division. Hence, the transformation of either mesophyll or bundle sheath cells will develop heteroplasmic transgenic plants, suggesting the transformation of both types of cells. Whilst developed transgenic sugarcane plants are heteroplasmic, and selection-based regeneration protocol envisaging the role of division and sorting of cells in the purification of transplastomic demands further improvement, the study has established many parameters that may open up exciting possibilities to express genes of agricultural or pharmaceutical importance in sugarcane.


1974 ◽  
Vol 52 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
C. K. M. Rathnam ◽  
V. S. R. Das

The intercellular and intracellular distributions of nitrate assimilating enzymes were studied. Nitrate reductase was found to be localized on the chloroplast envelope membranes. The chloroplastic NADPH – glutamate dehydrogenase was concentrated in the mesophyll cells. The extrachloroplastic NADH – glutamate dehydrogenase was localized in the bundle sheath cells. Glutamate synthesized in the mesophyll chloroplasts was interpreted to be utilized exclusively in the synthesis of aspartate, while in the bundle sheath cells it was thought to be consumed in other cellular metabolic processes. Based on the results, a scheme is proposed to account for the nitrate metabolism in the leaves of Eleusine coracana Gaertn. in relation to its aspartate-type C-4 pathway of photosynthesis.


Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 131-136 ◽  
Author(s):  
C. Dennis Elmore ◽  
Rex N. Paul

Spotted spurge (Euphorbia maculataL.) and prostrate spurge (E. supinaRaf.), both in subgenusChamesyce,were examined by light and electron microscopy using a caffeine - fixation technique to sequester the phenolic pools intercellularly. Both species have typical dicotyledon-type Kranz anatomy. Sequestered phenolic pools were located in vacuoles in epidermal and mesophyll cells. Only in spotted spurge, however, were additional phenolic pools formed in bundle - sheath cells. This study was undertaken because allelopathy has been demonstrated in prostrate spurge and because phenolic compounds have been implicated in allelopathy. These results would indicate that spotted spurge should also be allelopathic.


1969 ◽  
Vol 47 (1) ◽  
pp. 15-21 ◽  
Author(s):  
T. Bisalputra ◽  
W. J. S. Downton ◽  
E. B. Tregunna

The ultrastructure of the chlorenchymatous tissues around the vascular bundles of three different types of grass leaves is described. In the temperate grass leaf, as exemplified by wheat, the inner mestom sheath contains proplastids. Normal chloroplasts are found only within the mesophyll cells. Smaller chloroplasts occur in cells of the ill-defined parenchymatic bundle sheath. This type of leaf has the photosynthetic pathway described by Calvin and a high carbon dioxide compensation value. In the tropical grasses, Sorghum and Aristida, the new photosynthetic pathway proposed by Hatch et al. and low carbon dioxide compensation are correlated with development of the parenchymatic bundle sheath. Cytological evidence indicates that cells of the bundle sheath are much more active than the surrounding mesophyll tissue. The specialized chloroplasts of the bundle sheath cells may be responsible for the physiological and biochemical differences between leaves of tropical and temperate grasses.


1976 ◽  
Vol 3 (6) ◽  
pp. 863 ◽  
Author(s):  
E Repo ◽  
MD Hatch

Monocotyledonous C4 species classified as NADP-ME-type transfer malate from mesophyll to bundle sheath cells where this acid is decarboxylated via NADP malic enzyme (EC 1.1.1.40) to yield pyruvate and CO2. The dicotyledon G. celosioides is most appropriately classified in thls group on the basis of high leaf activities of NADP malic enzyme and NADP malate dehydrogenase (EC 1.1.1.82). However, this species contains high aspartate aminotransferase (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2) activities and centripetally located bundle sheath chloroplasts, features more typical of other groups of C4 species that cycle aspartate and alanine between mesophyll and bundle sheath cells. During the present study, we found that these aminotransferases and NADP malate dehydrogenase were predominantly located in mesophyll cells, that malate was the major C4 acid labelled when leaves were exposed to 14CO2, and that label was initially lost most rapidly from the C-4 of malate during a chase in 12CO2. These results are consistent with the major route of photosynthetic metabolism being the same as that operative in other NADP-ME-type species, although this may be supplemented by a minor route utilizing aspartate. In contrast to monocotyledonous NADP-ME-type C4 species, isolated bundle sheath cells from G. celosioides were capable of rapid photoreduction of NADP as judged by products formed during assimilation of 14CO2 and their capacity for light-dependent oxygen evolution. This was related to a relatively high frequency of single unstacked granum in the chloroplasts of these cells.


Sign in / Sign up

Export Citation Format

Share Document