scholarly journals Knockout of Babesia bovis rad51 ortholog and its complementation by expression from the BbACc3 artificial chromosome platform

2019 ◽  
Author(s):  
Erin A. Mack ◽  
Yu-Ping Xiao ◽  
David R. Allred

AbstractBabesia bovis establishes persistent infections of long duration in cattle, despite the development of effective anti-disease immunity. One mechanism used by the parasite to achieve persistence is rapid antigenic variation of the VESA1 cytoadhesion ligand through segmental gene conversion (SGC), a phenomenon thought to be a form of homologous recombination (HR). To begin investigation of the enzymatic basis for SGC we initially identified and knocked out the Bbrad51 gene encoding the B. bovis Rad51 ortholog. BbRad51 was found to be non-essential for in vitro growth of asexual-stage parasites. However, its loss resulted in hypersensitivity to methylmethane sulfonate (MMS) and an apparent defect in HR. This defect rendered attempts to complement the knockout phenotype by reinsertion of the Bbrad51 gene into the genome unsuccessful. To circumvent this difficulty, we constructed an artificial chromosome, BbACc3, into which the complete Bbrad51 locus was inserted, for expression of BbRad51 under regulation by autologous elements. Maintenance of BbACc3 makes use of centromeric sequences from chromosome 3 and telomeric ends from chromosome 1 of the B. bovis C9.1 line. A selection cassette employing human dihydrofolate reductase enables recovery of transformants by selection with pyrimethamine. We demonstrate that the BbACc3 platform is stably maintained once established, assembles nucleosomes to form native chromatin, and expands in telomere length over time. Significantly, the MMS-sensitivity phenotype observed in the absence of Bbrad51 was successfully complemented at essentially normal levels. We provide cautionary evidence, however, that in HR-competent parasites BbACc3 can recombine with native chromosomes, potentially resulting in crossover. We propose that, under certain circumstances this platform can provide a useful alternative for the genetic manipulation of this group of parasites, particularly when regulated gene expression under the control of autologous elements may be important.

Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 97 ◽  
Author(s):  
Gina M. Gallego-Lopez ◽  
Brian M. Cooke ◽  
Carlos E. Suarez

Bovine babesiosis is an acute and persistent tick-borne global disease caused mainly by the intraerythrocytic apicomplexan parasites Babesia bovis and B. bigemina. B. bovis infected erythrocytes sequester in blood capillaries of the host (cytoadhesion), causing malaria-like neurological signs. Cytoadhesion and antigenic variation in B. bovis are linked to the expression of members of the Variant Erythrocyte Surface Antigen (VESA) gene family. Animals that survive acute B. bovis infection and those vaccinated with attenuated strains remain persistently infected, suggesting that B. bovis parasites use immune escape mechanisms. However, attenuated B. bovis parasites do not cause neurological signs in vaccinated animals, indicating that virulence or attenuation factors play roles in modulating parasite virulence phenotypes. Artificial overexpression of the SBP2t11 protein, a defined attenuation factor, was associated with reduced cytoadhesion, suggesting a role for this protein as a key modulator of virulence in the parasite. Hereby, we propose a model that might be functional in the modulation of B. bovis virulence and persistence that relies on the interplay among SBP2t, VESA proteins, cytoadhesion, and the immune responses of the host. Elucidation of mechanisms used by the parasite to establish persistent infection will likely contribute to the design of new methods for the control of bovine babesiosis.


2009 ◽  
Vol 75 (19) ◽  
pp. 6062-6075 ◽  
Author(s):  
Michael H. Norris ◽  
Yun Kang ◽  
Diana Lu ◽  
Bruce A. Wilcox ◽  
Tung T. Hoang

ABSTRACT Genetic manipulation of the category B select agents Burkholderia pseudomallei and Burkholderia mallei has been stifled due to the lack of compliant selectable markers. Hence, there is a need for additional select-agent-compliant selectable markers. We engineered a selectable marker based on the gat gene (encoding glyphosate acetyltransferase), which confers resistance to the common herbicide glyphosate (GS). To show the ability of GS to inhibit bacterial growth, we determined the effective concentrations of GS against Escherichia coli and several Burkholderia species. Plasmids based on gat, flanked by unique flip recombination target (FRT) sequences, were constructed for allelic-replacement. Both allelic-replacement approaches, one using the counterselectable marker pheS and the gat-FRT cassette and one using the DNA incubation method with the gat-FRT cassette, were successfully utilized to create deletions in the asd and dapB genes of wild-type B. pseudomallei strains. The asd and dapB genes encode an aspartate-semialdehyde dehydrogenase (BPSS1704, chromosome 2) and dihydrodipicolinate reductase (BPSL2941, chromosome 1), respectively. Mutants unable to grow on media without diaminopimelate (DAP) and other amino acids of this pathway were PCR verified. These mutants displayed cellular morphologies consistent with the inability to cross-link peptidoglycan in the absence of DAP. The B. pseudomallei 1026b Δasd::gat-FRT mutant was complemented with the B. pseudomallei asd gene on a site-specific transposon, mini-Tn7-bar, by selecting for the bar gene (encoding bialaphos/PPT resistance) with PPT. We conclude that the gat gene is one of very few appropriate, effective, and beneficial compliant markers available for Burkholderia select-agent species. Together with the bar gene, the gat cassette will facilitate various genetic manipulations of Burkholderia select-agent species.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 279-287 ◽  
Author(s):  
S.A. Duncan ◽  
A. Nagy ◽  
W. Chan

Immediately prior to gastrulation the murine embryo consists of an outer layer of visceral endoderm (VE) and an inner layer of ectoderm. Differentiation and migration of the ectoderm then occurs to produce the three germ layers (ectoderm, embryonic endoderm and mesoderm) from which the fetus is derived. An indication that the VE might have a critical role in this process emerged from studies of Hnf-4(−/−) mouse embryos which fail to undergo normal gastrulation. Since expression of the transcription factor HNF-4 is restricted to the VE during this phase of development, we proposed that HNF-4-regulated gene expression in the VE creates an environment capable of supporting gastrulation. To address this directly we have exploited the versatility of embryonic stem (ES) cells which are amenable to genetic manipulation and can be induced to form VE in vitro. Moreover, embryos derived solely from ES cells can be generated by aggregation with tetraploid morulae. Using Hnf-4(−/−) ES cells we demonstrate that HNF-4 is a key regulator of tissue-specific gene expression in the VE, required for normal expression of secreted factors including alphafetoprotein, apolipoproteins, transthyretin, retinol binding protein, and transferrin. Furthermore, specific complementation of Hnf-4(−/−) embryos with tetraploid-derived Hnf-4(+/+) VE rescues their early developmental arrest, showing conclusively that a functional VE is mandatory for gastrulation.


2003 ◽  
Vol 185 (21) ◽  
pp. 6340-6347 ◽  
Author(s):  
Taku Amo ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

ABSTRACT Superoxide dismutase (SOD) was purified from a facultatively aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. The purified native protein from aerobically grown cells exhibited 1,960 U of SOD activity/mg and contained 0.86 ± 0.04 manganese and <0.01 iron atoms per subunit. The gene encoding SOD was cloned and expressed in Escherichia coli. Although the recombinant protein was soluble, little activity was observed due to the lack of metal incorporation. Reconstitution of the enzyme by heat treatment with either Mn or Fe yielded a highly active protein with specific activities of 1,970 and 434 U/mg, respectively. This indicated that the SOD from P. calidifontis was a cambialistic SOD with a preference toward Mn in terms of activity. Interestingly, reconstitution experiments in vitro indicated a higher tendency of the enzyme to incorporate Fe than Mn. When P. calidifontis was grown under anaerobic conditions, a majority of the native SOD was incorporated with Fe, indicating the cambialistic property of this enzyme in vivo. We further examined the expression levels of SOD and a previously characterized Mn catalase from this strain in the presence or absence of oxygen. Northern blot, Western blot, and activity measurement analyses revealed that both genes are expressed at much higher levels under aerobic conditions. We also detected a rapid response in the biosynthesis of these enzymes once the cells were exposed to oxygen.


2009 ◽  
Vol 83 (10) ◽  
pp. 4835-4843 ◽  
Author(s):  
Fotis Asimakopoulos ◽  
Harold E. Varmus

ABSTRACT The transcription factor Blimp-1 has emerged as a regulator of cell fate in embryonic (germ cell) and adult (B- and T-cell immune effector and epithelial) lineages. It has also been proposed to act as a tumor suppressor in B-cell malignancy. Here, we present a novel in vivo system enabling the targeted genetic manipulation of cells expressing Prdm1, the gene encoding Blimp-1. We created bacterial artificial chromosome-transgenic mice expressing the avian leukosis virus (ALV) receptor TVB, fused to monomeric red fluorescent protein, under regulation by Prdm1 transcriptional elements, and we achieved transduction of TVB-expressing lymphocytes by ALV vectors bearing a subgroup B envelope. The system presented here incorporates a number of innovations. First, it is the first mammalian transgenic system that employs the ALV receptor TVB, thus expanding the flexibility and scope of ALV-mediated gene delivery. Second, it represents the first ALV-based system that allows gene transfer and expression into in vivo-activated mature lymphocytes, a cell type that has traditionally presented formidable challenges to efficient retroviral transduction. Third, Prdm1:TVB-mRFP transgenic animals could provide an invaluable tool for exploring the diverse roles of Blimp-1 in lineage commitment, immune regulation, and tumorigenesis.


2002 ◽  
Vol 76 (6) ◽  
pp. 2714-2720 ◽  
Author(s):  
Marcus Niebert ◽  
Claire Rogel-Gaillard ◽  
Patrick Chardon ◽  
Ralf R. Tönjes

ABSTRACT Vertically transmitted endogenous retroviruses pose an infectious risk in the course of pig-to-human transplantation of cells, tissues, and organs. Two classes of polytropic type C porcine endogenous retroviruses (PERV) productively infect human cells in vitro. The cloning and characterization of replication-competent PERV-B sequences from infected human cells (F. Czauderna, N. Fischer, K. Boller, R. Kurth, and R. R. Tönjes, J. Virol. 74:4028-4038, 2000) as well as the cloning of functional PERV-A and -B sequences from porcine cell line PK15 (U. Krach, N. Fischer, F. Czauderna, and R. R. Tönjes, J. Virol. 75:5465-5472, 2001) have been previously described. Here we report the isolation of four full-length proviral sequences from a porcine bacterial artificial chromosome (BAC) library that comprises chromosomally assigned PERV. Clones Bac-PERV-A(130A12) and Bac-PERV-A(151B10) map to pig chromosome 1 and demonstrate close homology to PK15-PERV-A(58) in env and to PERV-MSL in long terminal repeat (LTR), gag, and pro/pol sequences. Clone Bac-PERV-A(463H12) is located on pig chromosome 3 and demonstrates close homology to PK15-PERV-A(58) in env and to 293-PERV-B(43) in LTR, gag, and pro/pol (Czauderna et al.; R. R. Tönjes, F. Czauderna, N. Fischer, U. Krach, K. Boller, P. Chardon, C. Rogel-Gailard, M. Niebert, G. Scheef, A. Werner, and R. Kurth, Transplant Proc. 32:1158-1161, 2000). Clone Bac-PERV-B(192B9) is located on pig chromosome 7 in the swine leukocyte antigen region and is highly homologous with but distinct from the previously described functional clone 293-PERV-B(43) and bears the number of repeats initially observed in the LTRs of clone 293-PERV-A(42) (Czauderna et al.; Krach et al.). Clones Bac-PERV-A(130A12), Bac-PERV-A(151B10), and Bac-PERV-A(463H12) were replication competent upon transfection into susceptible 293 and HeLa cells. Bac-PERV-B(192B9), however, bears two stop codons in pro/pol preventing this clone from being replication competent in some individual pigs, but initial screenings indicate that this provirus might be intact in others. The data suggest that the porcine genome harbors a limited number of infectious PERV sequences, allowing for specific screening in different pig breeds.


2010 ◽  
Vol 84 (6) ◽  
pp. 2871-2880 ◽  
Author(s):  
Fuchun Zhou ◽  
Qiuhua Li ◽  
Scott W. Wong ◽  
Shou-Jiang Gao

ABSTRACT Infectious bacterial artificial chromosomes (BACs) of herpesviruses are powerful tools for genetic manipulation. However, the presence of BAC vector sequence in the viral genomes often causes genetic and phenotypic alterations. While the excision of the BAC vector cassette can be achieved by homologous recombination between extra duplicate viral sequences or loxP site-mediated recombination, these methods either are inefficient or leave a loxP site mark in the viral genome. Here we describe the use of viral intrinsic repeat sequences, which are commonly present in herpesviral genomes, to excise the BAC vector cassette. Using a newly developed in vitro transposon-based cloning approach, we obtained an infectious BAC of rhesus rhadinovirus (RRV) strain RRV26-95 with the BAC vector cassette inserted in the terminal repeat (TR) region. We showed that the BAC vector cassette was rapidly excised upon reconstitution in cells predominantly through TR-mediated homologous recombination. Genetic and phenotypic analysis showed that the BAC-excised virus was reversed to wild-type RRV. Using this autoexcisable BAC clone, we successfully generated an RRV mutant with a deletion of Orf50, which encodes a replication and transcription activator (RTA) protein. Together, these results illustrate the usefulness of TR for genetic manipulation of herpesviruses when combined with the novel transposon-based cloning approach.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaohong Cui ◽  
Stuart P. Adler ◽  
Andrew J. Davison ◽  
Larry Smith ◽  
EL-Sayed E. Habib ◽  
...  

Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.


2006 ◽  
Vol 54 (3) ◽  
pp. 351-358 ◽  
Author(s):  
P. Pepó

Plant regeneration via tissue culture is becoming increasingly more common in monocots such as maize (Zea mays L.). Pollen (gametophytic) selection for resistance to aflatoxin in maize can greatly facilitate recurrent selection and the screening of germplasm for resistance at much less cost and in a shorter time than field testing. In vivo and in vitro techniques have been integrated in maize breeding programmes to obtain desirable agronomic attributes, enhance the genes responsible for them and speed up the breeding process. The efficiency of anther and tissue cultures in maize and wheat has reached the stage where they can be used in breeding programmes to some extent and many new cultivars produced by genetic manipulation have now reached the market.


Sign in / Sign up

Export Citation Format

Share Document