scholarly journals Improving short and long term genetic gain by accounting for within family variance in optimal cross selection

2019 ◽  
Author(s):  
Antoine Allier ◽  
Christina Lehermeier ◽  
Alain Charcosset ◽  
Laurence Moreau ◽  
Simon Teyssèdre

AbstractThe implementation of genomic selection in recurrent breeding programs raised several concerns, especially that a higher inbreeding rate could compromise the long term genetic gain. An optimized mating strategy that maximizes the performance in progeny and maintains diversity for long term genetic gain on current and yet unknown future targets is essential. The optimal cross selection approach aims at identifying the optimal set of crosses maximizing the expected genetic value in the progeny under a constraint on diversity in the progeny. Usually, optimal cross selection does not account for within family selection, i.e. the fact that only a selected fraction of each family serves as candidate parents of the next generation. In this study, we consider within family variance accounting for linkage disequilibrium between quantitative trait loci to predict the expected mean performance and the expected genetic diversity in the selected progeny of a set of crosses. These predictions rely on the method called usefulness criterion parental contribution (UCPC). We compared UCPC based optimal cross selection and optimal cross selection in a long term simulated recurrent genomic selection breeding program considering overlapping generations. UCPC based optimal cross selection proved to be more efficient to convert the genetic diversity into short and long term genetic gains than optimal cross selection. We also showed that using the UCPC based optimal cross selection, the long term genetic gain can be increased with only limited reduction of the short term commercial genetic gain.

2021 ◽  
Author(s):  
Peter Civan ◽  
Renaud Rincent ◽  
Alice Danguy-Des-Deserts ◽  
Jean-Michel Elsen ◽  
Sophie Bouchet

AbstractThe breeding efforts of the twentieth century contributed to large increases in yield but selection may have increased vulnerability to environmental perturbations. In that context, there is a growing demand for methodology to re-introduce useful variation into cultivated germplasm. Such efforts can focus on the introduction of specific traits monitored through diagnostic molecular markers identified by QTL/association mapping or selection signature screening. A combined approach is to increase the global diversity of a crop without targeting any particular trait.A considerable portion of the genetic diversity is conserved in genebanks. However, benefits of genetic resources (GRs) in terms of favorable alleles have to be weighed against unfavorable traits being introduced along. In order to facilitate utilization of GR, core collections are being identified and progressively characterized at the phenotypic and genomic levels. High-throughput genotyping and sequencing technologies allow to build prediction models that can estimate the genetic value of an entire genotyped collection. In a pre-breeding program, predictions can accelerate recurrent selection using rapid cycles in greenhouses by skipping some phenotyping steps. In a breeding program, reduced phenotyping characterization allows to increase the number of tested parents and crosses (and global genetic variance) for a fixed budget. Finally, the whole cross design can be optimized using progeny variance predictions to maximize short-term genetic gain or long-term genetic gain by constraining a minimum level of diversity in the germplasm. There is also a potential to further increase the accuracy of genomic predictions by taking into account genotype by environment interactions, integrating additional layers of omics and environmental information.Here, we aim to review some relevant concepts in population genomics together with recent advances in quantitative genetics in order to discuss how the combination of both disciplines can facilitate the use of genetic diversity in plant (pre) breeding programs.


2019 ◽  
Author(s):  
Antoine Allier ◽  
Simon Teyssèdre ◽  
Christina Lehermeier ◽  
Laurence Moreau ◽  
Alain Charcosset

ABSTRACTThe narrow genetic base of elite germplasm compromises long-term genetic gain and increases the vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an efficient strategy is required to broaden the genetic base of commercial breeding programs while not compromising short-term variety release. Optimal cross selection aims at identifying the optimal set of crosses that balances the expected genetic value and diversity. We propose to consider genomic selection and optimal cross selection to recurrently improve genetic resources (i.e. pre-breeding), to bridge the improved genetic resources with elites (i.e. bridging), and to manage introductions into the elite breeding population. Optimal cross selection is particularly adapted to jointly identify bridging, introduction and elite crosses to ensure an overall consistency of the genetic base broadening strategy. We compared simulated breeding programs introducing donors with different performance levels, directly or indirectly after bridging. We also evaluated the effect of the training set composition on the success of introductions. We observed that with recurrent introductions of improved donors, it is possible to maintain the genetic diversity and increase mid- and long-term performances with only limited penalty at short-term. Considering a bridging step yielded significantly higher mid- and long-term genetic gain when introducing low performing donors. The results also suggested to consider marker effects estimated with a broad training population including donor by elite and elite by elite progeny to identify bridging, introduction and elite crosses.


2020 ◽  
Author(s):  
Owen Powell ◽  
R. Chris Gaynor ◽  
Gregor Gorjanc ◽  
Christian R. Werner ◽  
John M. Hickey

AbstractHybrid crop breeding programs using a two-part strategy produced the most genetic gain, but a maximum avoidance of inbreeding crossing scheme was required to increase long-term genetic gain. The two-part strategy uses outbred parents to complete multiple generations per year to reduce the generation interval of hybrid crop breeding programs. The maximum avoidance of inbreeding crossing scheme manages genetic variance by maintaining uniform contributions and inbreeding coefficients across all crosses. This study performed stochastic simulations to quantify the potential of a two-part strategy in combination with two crossing schemes to increase the rate of genetic gain in hybrid crop breeding programs. The two crossing schemes were: (i) a circular crossing scheme, and (ii) a maximum avoidance of inbreeding crossing scheme. The results from this study show that the implementation of genomic selection increased the rate of genetic gain, and that the two-part hybrid crop breeding program generated the highest genetic gain. This study also shows that the maximum avoidance of inbreeding crossing scheme increased long-term genetic gain in two-part hybrid crop breeding programs completing multiple selection cycles per year, as a result of maintaining higher levels of genetic variance over time. The flexibility of the two-part strategy offers further opportunities to integrate new technologies to further increase genetic gain in hybrid crop breeding programs, such as the use of outbred training populations. However, the practical implementation of the two-part strategy will require the development of bespoke transition strategies to fundamentally change the data, logistics, and infrastructure that underpin hybrid crop breeding programs.Key messageHybrid crop breeding programs using a two-part strategy produced the most genetic gain by using outbred parents to complete multiple generations per year. However, a maximum avoidance of inbreeding crossing scheme was required to manage genetic variance and increase long-term genetic gain.


2021 ◽  
Author(s):  
Yongjun Li ◽  
Sukhjiwan Kaur ◽  
Luke W. Pembleton ◽  
Hossein Valipour-Kahrood ◽  
Garry M. Rosewarne ◽  
...  

Abstract Using a stochastic computer simulation, we investigated the benefit of optimization strategies in the context of genomic selection (GS) for pulse breeding programs. We simulated GS for moderately complex to highly complex traits such as disease resistance, grain weight and grain yield in multiple environments with a high level of genotype-by-environment interaction for grain yield. GS led to higher genetic gain per unit of time and higher genetic diversity loss than phenotypic selection by shortening the breeding cycle time. The genetic gain obtained from selecting the segregating parents early in the breeding cycle (at F1 or F2 stages) was substantially higher than selecting at later stages even though prediction accuracy was moderate. Increasing the number of F1 intercross (F1i) families and keeping the total number of progeny of F1i families constant, we observed a decrease in genetic gain and increase in genetic diversity. Whereas increasing the number of progeny per F1i family while keeping a constant number of F1i families increased rate of genetic gain and had higher genetic diversity loss per unit of time. Adding 50 F2 family phenotypes to the training population increased the accuracy of GEBVs and genetic gain per year and decreased the rate of genetic diversity loss. Genetic diversity could be preserved by applying a strategy that restricted both the percentage of alleles fixed and the average relationship of the group of selected parents to preserve long-term genetic improvement in the pulse breeding program.


Author(s):  
Nicholas Santantonio ◽  
Kelly Robbins

1AbstractPlant breeding programs must adapt genomic selection to an already complex system. Inbred or hybrid plant breeding programs must make crosses, produce inbred individuals, and phenotype inbred lines or their hybrid test-crosses to select and validate superior material for product release. These products are few, and while it is clear that population improvement is necessary for continued genetic gain, it may not be sufficient to generate superior products. Rapid-cycle recurrent truncation genomic selection has been proposed to increase genetic gain by reducing generation time. This strategy has been shown to increase short-term gains, but can quickly lead to loss of genetic variance through inbreeding as relationships drive prediction. The optimal contribution of each individual can be determined to maximize gain in the following generation while limiting inbreeding. While optimal contribution strategies can maintain genetic variance in later generations, they suffer from a lack of short-term gains in doing so. We present a hybrid approach that branches out yearly to push the genetic value of potential varietal materials while maintaining genetic variance in the recurrent population, such that a breeding program can achieve short-term success without exhausting long-term potential. Because branching increases the genetic distance between the phenotyping pipeline and the recurrent population, this method requires sacrificing some trial plots to phenotype materials directly out of the recurrent population. We envision the phenotypic pipeline not only for selection and validation, but as an information generator to build predictive models and develop new products.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Anna-Charlotte Doublet ◽  
Pascal Croiseau ◽  
Sébastien Fritz ◽  
Alexis Michenet ◽  
Chris Hozé ◽  
...  

Abstract Background In France, implementation of genomic evaluations in dairy cattle breeds started in 2009 and this has modified the breeding schemes drastically. In this context, the goal of our study was to understand the impact of genomic selection on the genetic diversity of bulls from three French dairy cattle breeds born between 2005 and 2015 (Montbéliarde, Normande and Holstein) and the factors that are involved. Methods We compared annual genetic gains, inbreeding rates based on runs of homozygosity (ROH) and pedigree data, and mean ROH length within breeds, before and after the implementation of genomic selection. Results Genomic selection induced an increase in mean annual genetic gains of 50, 71 and 33% for Montbéliarde, Normande and Holstein bulls, respectively, and in parallel, the generation intervals were reduced by a factor of 1.7, 1.9 and 2, respectively. We found no significant change in inbreeding rate for the two national breeds, Montbéliarde and Normande, and a significant increase in inbreeding rate for the Holstein international breed, which is now as high as 0.55% per year based on ROH and 0.49% per year based on pedigree data (equivalent to a rate of 1.36 and 1.39% per generation, respectively). The mean ROH length was longer for bulls from the Holstein breed than for those from the other two breeds. Conclusions With the implementation of genomic selection, the annual genetic gain increased for bulls from the three major French dairy cattle breeds. At the same time, the annual loss of genetic diversity increased for Holstein bulls, possibly because of the massive use of a few elite bulls in this breed, but not for Montbéliarde and Normande bulls. The increase in mean ROH length in Holstein may reflect the occurrence of recent inbreeding. New strategies in breeding schemes, such as female donor stations and embryo transfer, and recent implementation of genomic evaluations in small regional breeds should be studied carefully in order to ensure the sustainability of breeding schemes in the future.


2017 ◽  
Author(s):  
Gregor Gorjanc ◽  
R. Chris Gaynor ◽  
John M. Hickey

AbstractThis study evaluates optimal cross selection for balancing selection and maintenance of genetic diversity in two-part plant breeding programs with rapid recurrent genomic selection. The two-part program reorganizes a conventional breeding program into population improvement component with recurrent genomic selection to increase the mean of germplasm and product development component with standard methods to develop new lines. Rapid recurrent genomic selection has a large potential, but is challenging due to genotyping costs or genetic drift. Here we simulate a wheat breeding program for 20 years and compare optimal cross selection against truncation selection in the population improvement with one to six cycles per year. With truncation selection we crossed a small or a large number of parents. With optimal cross selection we jointly optimised selection, maintenance of genetic diversity, and cross allocation with AlphaMate program. The results show that the two-part program with optimal cross selection delivered the largest genetic gain that increased with the increasing number of cycles. With four cycles per year optimal cross selection had 78% (15%) higher long-term genetic gain than truncation selection with a small (large) number of parents. Higher genetic gain was achieved through higher efficiency of converting genetic diversity into genetic gain; optimal cross selection quadrupled (doubled) efficiency of truncation selection with a small (large) number of parents. Optimal cross selection also reduced the drop of genomic selection accuracy due to the drift between training and prediction populations. In conclusion, optimal cross-selection enables optimal management and exploitation of population improvement germplasm in two-part programs.Key messageOptimal cross selection increases long-term genetic gain of two-part programs with rapid recurrent genomic selection. It achieves this by optimising efficiency of converting genetic diversity into genetic gain through reducing the loss of genetic diversity and reducing the drop of genomic prediction accuracy with rapid cycling.


2021 ◽  
Vol 12 ◽  
Author(s):  
◽  
Aline Fugeray-Scarbel ◽  
Catherine Bastien ◽  
Mathilde Dupont-Nivet ◽  
Stéphane Lemarié

The present study is a transversal analysis of the interest in genomic selection for plant and animal species. It focuses on the arguments that may convince breeders to switch to genomic selection. The arguments are classified into three different “bricks.” The first brick considers the addition of genotyping to improve the accuracy of the prediction of breeding values. The second consists of saving costs and/or shortening the breeding cycle by replacing all or a portion of the phenotyping effort with genotyping. The third concerns population management to improve the choice of parents to either optimize crossbreeding or maintain genetic diversity. We analyse the relevance of these different bricks for a wide range of animal and plant species and sought to explain the differences between species according to their biological specificities and the organization of breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jana Obšteter ◽  
Janez Jenko ◽  
Gregor Gorjanc

This paper evaluates the potential of maximizing genetic gain in dairy cattle breeding by optimizing investment into phenotyping and genotyping. Conventional breeding focuses on phenotyping selection candidates or their close relatives to maximize selection accuracy for breeders and quality assurance for producers. Genomic selection decoupled phenotyping and selection and through this increased genetic gain per year compared to the conventional selection. Although genomic selection is established in well-resourced breeding programs, small populations and developing countries still struggle with the implementation. The main issues include the lack of training animals and lack of financial resources. To address this, we simulated a case-study of a small dairy population with a number of scenarios with equal available resources yet varied use of resources for phenotyping and genotyping. The conventional progeny testing scenario collected 11 phenotypic records per lactation. In genomic selection scenarios, we reduced phenotyping to between 10 and 1 phenotypic records per lactation and invested the saved resources into genotyping. We tested these scenarios at different relative prices of phenotyping to genotyping and with or without an initial training population for genomic selection. Reallocating a part of phenotyping resources for repeated milk records to genotyping increased genetic gain compared to the conventional selection scenario regardless of the amount and relative cost of phenotyping, and the availability of an initial training population. Genetic gain increased by increasing genotyping, despite reduced phenotyping. High-genotyping scenarios even saved resources. Genomic selection scenarios expectedly increased accuracy for young non-phenotyped candidate males and females, but also proven females. This study shows that breeding programs should optimize investment into phenotyping and genotyping to maximize return on investment. Our results suggest that any dairy breeding program using conventional progeny testing with repeated milk records can implement genomic selection without increasing the level of investment.


2015 ◽  
Vol 37 (2) ◽  
pp. 170 ◽  
Author(s):  
Emily J. Miller ◽  
Mark D. B. Eldridge ◽  
Keith Morris ◽  
Neil Thomas ◽  
Catherine A. Herbert

The endemic Australian greater bilby (Macrotis lagotis) is a vulnerable and iconic species. It has declined significantly due to habitat loss, as well as competition and predation from introduced species. Conservation measures include a National Recovery Plan that incorporates several captive breeding programs. Two of these programs were established within 12 months of one another (1997/98), with the same number and sex ratio of founding individuals, but executed different breeding strategies: (1) unmanipulated mating in semi–free range natural habitat versus (2) minimising mean kinship in large enclosures, with the supplementation of new individuals into both populations. This study evaluates the long-term genetic impact of these programs and examines the congruency between the pedigree studbook estimates of diversity and molecular data. Our data demonstrate that genetic diversity was maintained in both populations, with the supplementation of new individuals contributing to the gene pool. The studbook estimates of diversity and inbreeding are not consistent with the microsatellite data and should not solely be relied upon to evaluate the genetic health of captive populations. Our analyses suggest that captive breeding programs may not require costly and intensive management to effectively maintain long-term genetic diversity in a promiscuous species.


Sign in / Sign up

Export Citation Format

Share Document