scholarly journals Protein lysine methylation is involved in modulating the response of sensitive and tolerant Arabidopsis species to cadmium stress

2019 ◽  
Author(s):  
Nelson B.C. Serre ◽  
Manon Sarthou ◽  
Océane Gigarel ◽  
Sylvie Figuet ◽  
Massimiliano Corso ◽  
...  

ABSTRACTThe mechanisms underlying the response and adaptation of plants to excess of trace elements are not fully described. Here, we analyzed the importance of protein lysine methylation for plants to cope with cadmium. We analyzed the effect of cadmium on lysine-methylated proteins and protein lysine methyltransferases (KMTs) in two cadmium-sensitive species, Arabidopsis thaliana and A. lyrata, and in three populations of A. halleri with contrasting cadmium accumulation and tolerance traits. We showed that some proteins are differentially methylated at lysine residues in response to Cd and that a few genes coding KMTs is regulated by cadmium. Also, we showed that nine out of 23 A. thaliana mutants interrupted in KMT genes have a tolerance to cadmium that is significantly different from that of wild-type seedlings. We further characterized two of these mutants, one was knocked-out in the calmodulin lysine methyltransferase gene and displayed increased tolerance to cadmium, the other was interrupted in a KMT gene of unknown function and showed a decreased capacity to cope with cadmium. Together, our results showed that lysine methylation of non-histone proteins is impacted by cadmium and that several methylation events are important for modulating the response of Arabidopsis plants to cadmium stress.

2019 ◽  
Vol 43 (3) ◽  
pp. 760-774 ◽  
Author(s):  
Nelson B. C. Serre ◽  
Manon Sarthou ◽  
Océane Gigarel ◽  
Sylvie Figuet ◽  
Massimiliano Corso ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 557 ◽  
Author(s):  
Li He ◽  
Xiaomin Wang ◽  
Ruijun Feng ◽  
Qiang He ◽  
Shengwang Wang ◽  
...  

Alternative pathway (AP) has been widely accepted to be involved in enhancing tolerance to various environmental stresses. In this study, the role of AP in response to cadmium (Cd) stress in two barley varieties, highland barley (Kunlun14) and barley (Ganpi6), was investigated. Results showed that the malondialdehyde (MDA) content and electrolyte leakage (EL) level under Cd stress increased in two barley varieties. The expressions of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein amount were clearly induced more in Kunlun14 under Cd stress, and these parameters were further enhanced by applying sodium nitroprussid (SNP, a NO donor). Moreover, H2O2 and O2− contents were raised in the Cd-treated roots of two barley varieties, but they were markedly relieved by exogenous SNP. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting that AP contributes to NO-enhanced Cd stress tolerance. Further study demonstrated that the effect of SHAM application on reactive oxygen species (ROS)-related scavenging enzymes and antioxidants was minimal. These observations showed that AP exerts an indispensable function in NO-enhanced Cd stress tolerance in two barley varieties. AP was mainly responsible for regulating the ROS accumulation to maintain the homeostasis of redox state.


2018 ◽  
Vol 122 (3) ◽  
pp. 373-385 ◽  
Author(s):  
Miaomiao Cheng ◽  
Anan Wang ◽  
Zhiqian Liu ◽  
Anthony R Gendall ◽  
Simone Rochfort ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Liping Dou ◽  
Fei Yan ◽  
Jiuxia Pang ◽  
Dehua Zheng ◽  
Dandan Li ◽  
...  

Abstract The oncogenic fusion protein AML1-ETO retains the ability of AML1 to interact with the enhancer core DNA sequences, but blocks AML1-dependent transcription. Previous studies have shown that post-translational modification of AML1-ETO may play a role in its regulation. Here we report that AML1-ETO-positive patients, with high histone lysine methyltransferase Enhancer of zeste homolog 1 (EZH1) expression, show a worse overall survival than those with lower EZH1 expression. EZH1 knockdown impairs survival and proliferation of AML1-ETO-expressing cells in vitro and in vivo. We find that EZH1 WD domain binds to the AML1-ETO NHR1 domain and methylates AML1-ETO at lysine 43 (Lys43). This requires the EZH1 SET domain, which augments AML1-ETO-dependent repression of tumor suppressor genes. Loss of Lys43 methylation by point mutation or domain deletion impairs AML1-ETO-repressive activity. These findings highlight the role of EZH1 in non-histone lysine methylation, indicating that cooperation between AML1-ETO and EZH1 and AML1-ETO site-specific lysine methylation promote AML1-ETO transcriptional repression in leukemia.


2019 ◽  
Vol 136 ◽  
pp. 07002
Author(s):  
Le Liang ◽  
Wanjia Tang ◽  
Xuemei Peng ◽  
Jing Lu ◽  
Han Liu ◽  
...  

Indole-3-acetic acid (IAA) plays crucial roles in plant growth and stress tolerance. In present study, the effects of spraying different concentrations (0, 25, 50, 100 and 200 μmol/L) of IAA on the growth and cadmium (Cd) accumulation in lettuce (Lactuca sativa) were investigated. The lettuce exposed to Cd exhibited a substantial decline in growth, and the Cd content of them significantly increased. Spraying exogenous IAA resulted in alleviating the inhibitory of Cd toxicity to lettuce. The dry weight in shoots of lettuce increased by spraying with IAA compared with the Cd treatment alone, but the dry weight of roots had no significantly differences. Although exogenous IAA increased the root Cd content, it significantly reduced shoot Cd content, indicating its role in Cd transport. Therefore, spraying IAA effectively alleviated Cd toxicity and reduced Cd uptake in the edible parts of lettuce, and the 100 μmol/L IAA was the optimal dose.


2007 ◽  
Vol 75 (6) ◽  
pp. 2946-2953 ◽  
Author(s):  
Zoë E. V. Worthington ◽  
Nicholas H. Carbonetti

ABSTRACT Pertussis toxin (PT) is an important virulence factor produced by Bordetella pertussis. PT holotoxin comprises one enzymatically active A subunit (S1), associated with a pentamer of B subunits. PT is an ADP-ribosyltransferase that modifies several mammalian heterotrimeric G proteins. Some bacterial toxins are believed to undergo retrograde intracellular transport through the Golgi apparatus to the endoplasmic reticulum (ER). The ER-associated degradation (ERAD) pathway involves the removal of misfolded proteins from the ER and degradation upon their return to the cytosol; this pathway may be exploited by PT and other toxins. In the cytosol, ERAD substrates are ubiquitinated at lysine residues, targeting them to the proteasome for degradation. We hypothesize that S1 avoids ubiquitination and proteasome degradation due to its lack of lysine residues. We predicted that the addition of lysine residues would reduce PT toxicity by allowing ubiquitination and degradation to occur. Variant forms of PT were engineered, replacing one, two, or three arginines with lysines in a variety of locations on S1. Several variants were identified with wild-type in vitro enzymatic activity but reduced cellular activity, consistent with our hypothesis. Significant recovery of the cellular activity of these variants was observed when CHO cells were pretreated with a proteasome inhibitor. We concluded that the replacement of arginine residues with lysine in the S1 subunit of PT renders the toxin subject to proteasomal degradation, suggesting that wild-type PT avoids proteasome degradation due to an absence of lysine residues.


2019 ◽  
Vol 25 (1) ◽  
pp. 51-57
Author(s):  
Seyedeh Homeira Soleimani ◽  
Francoise Bernard ◽  
Mohsen Amini ◽  
Ramezan-Ali Khavari- nezhad

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3187-3187
Author(s):  
Chengliang Wu ◽  
Paul Y Kim ◽  
Reg Manuel ◽  
Ann Gils ◽  
Paul Declerck ◽  
...  

Abstract Abstract 3187 Poster Board III-124 Thrombin-activatable fibrinolysis inhibitor (TAFI) is a 60 kDa plasma protein that is activated to the enzyme TAFIa, by a single cleavage at Arg92 by thrombin, plasmin or trypsin. TAFIa is a carboxypeptidase B-like enzyme that attenuates fibrinolysis. Thrombomodulin (TM) is a cofactor which increases the overall efficiency of thrombin-mediated TAFI activation by 1250-fold. Thus, the thrombin-TM complex is believed to be the physiological TAFI activator. The minimal structure of TM required for efficient TAFI activation contains the EGF-like domains 3 through 6. New structure models have postulated that the C-loop of TM EGF-like domain 3 has a negatively charged molecular surface that could interact with several positively charged surface patches on TAFI. One positively charged surface patch of TAFI consists of the three consecutive lysine residues at positions 42, 43, and 44, which are unique to the TAFI activation peptide as no corresponding residues exist in rattus, bovine or human tissue procarboxypeptidases A and B. More interestingly, all three lysine residues are conserved in human, rattus, murine and canine TAFI, but not for bovine TAFI which only has a single lysine residue at position 42. We previously reported that when the three lysine residues are substituted by alanine residues (K42/43/44A), compared to the wild-type, the catalytic efficiencies for TAFI activation by thrombin-TM complex decreased 8-fold. In order to identify which residue(s) are key for TAFI activation by the thrombin-TM complex, combinations of mutations of the three lysine residues were constructed and expressed. TAFI wild-type or mutants were activated by thrombin for 10 minutes in the absence or presence of TM at varying levels. At this point, the levels of TAFIa formed were measured by adding the synthetic substrate AAFR containing PPAck and measuring the absorbance change at 349nm. The rates were used to determine the kinetic parameters of TAFI activation. The non-linear regression analysis with the NONLIN module of SYSTAT returned best fit values along with their asymptotic standard errors (A.S.E) for the kinetic parameters of TAFI activation (kcat, Km, and Kd). The value of Kd (the dissociation constant for the thrombin-TM interaction) is assumed to be the same for wild-type TAFI and the mutants, because all reactions have this interaction in common. The regression analysis yielded Kd = 22.4 ± 1.3 nM for this interaction. This value agrees favourably with a value of 22 nM measured directly and reported previously. The kcat values (1/sec) ranged from 1.06 ± 0.18 (K44A) to 1.19 ± 0.18 (K43A). The value for wild-type TAFI was 1.50 ± 0.63 (1/sec). Km values ranged from 1.14 ± 0.73 μM (WT) to 3.01 ± 2.17 μM (K42A). The kcat / Km ratios (1/sec/μM), which provides the best indication of overall catalytic efficiency, ranged from 1.43 ± 0.27 (WT) to 0.43 ± 0.17 (K42A). When the three lysine residues are individually substituted by alanine residues (K42A, K43A, and K44A), compared to the wild-type, their catalytic efficiencies (kcat / Km) for TAFI activation by the thrombin-TM complex decreased 3.3-fold for K42A, 1.83-fold for K43A, and 1.96-fold for K44A. When Lys43 and Lys44 are substituted by alanine residues simultaneously (K43/44A), its catalytic efficiency decreased 3.3-fold. Together, our data show that each of these lysine residues on the activation peptide of TAFI may contribute partially to the interactions of TAFI with the thrombin-TM complex that are needed for efficient activation. In addition, the effects of the mutations may be additive. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document