scholarly journals Effects of exogenous indole-3-acetic acid on the growth and cadmium accumulation of lettuce under cadmium stress

2019 ◽  
Vol 136 ◽  
pp. 07002
Author(s):  
Le Liang ◽  
Wanjia Tang ◽  
Xuemei Peng ◽  
Jing Lu ◽  
Han Liu ◽  
...  

Indole-3-acetic acid (IAA) plays crucial roles in plant growth and stress tolerance. In present study, the effects of spraying different concentrations (0, 25, 50, 100 and 200 μmol/L) of IAA on the growth and cadmium (Cd) accumulation in lettuce (Lactuca sativa) were investigated. The lettuce exposed to Cd exhibited a substantial decline in growth, and the Cd content of them significantly increased. Spraying exogenous IAA resulted in alleviating the inhibitory of Cd toxicity to lettuce. The dry weight in shoots of lettuce increased by spraying with IAA compared with the Cd treatment alone, but the dry weight of roots had no significantly differences. Although exogenous IAA increased the root Cd content, it significantly reduced shoot Cd content, indicating its role in Cd transport. Therefore, spraying IAA effectively alleviated Cd toxicity and reduced Cd uptake in the edible parts of lettuce, and the 100 μmol/L IAA was the optimal dose.

2019 ◽  
Vol 136 ◽  
pp. 07001
Author(s):  
Le Liang ◽  
Han Liu ◽  
Jing Lu ◽  
Xuemei Peng ◽  
Wanjia Tang ◽  
...  

In plant growth and stress tolerance, indole-3-acetic acid (IAA) plays an important role. In this research, the effects of spraying different concentration (0, 25, 50, 100 and 200 μmol/ L) of IAA on the antioxidant system in lettuce were investigated. The lettuce (Lactuca sativa) exposed to cadmium (Cd) exhibited the SOD, POD activities and MDA content obviously increased. Spraying exogenous IAA resulted that the CAT activity, soluble protein and proline content in shoots of lettuce increased compared with the Cd treatment alone, and MDA content with 50 μmol/L IAA was lowest. Therefore, spraying IAA effectively alleviated Cd toxicity and enhanced antioxidant system of lettuce, and the 100 μmol/L IAA was the optimal dose.


2019 ◽  
Vol 136 ◽  
pp. 07003
Author(s):  
Guochao Sun ◽  
Yan Wang ◽  
Xiaohan Wei ◽  
Yunying Xiao ◽  
Xiangting Xu ◽  
...  

IAA (indole-3-acetic acid), can regulate plant growth and development, and it can involve in regulation of abiotic stresses. In the present study, the effects of spraying different concentrations (0, 25, 50, 100 and 200 μmol/L) of IAA on the photosynthesis physiology in lettuce were investigated. The lettuce (Lactuca sativa) exposed to cadmium (Cd) exhibited a substantial change in photosynthetic pigment content and photosynthetic parameters. Spraying exogenous IAA resulted in alleviating the inhibitory of Cd toxicity to lettuce. The photosynthetic pigment content in shoot of lettuce increased by spraying with IAA compared with the Cd treatment alone. Cd stress caused reductions (P < 0.05) in Pn and Ls, respectively, whereas Gs, Ci, and Tr were increased, compared with the control. Spraying exogenous IAA resulted that the Pn increased and the Ls, Gs, Ci, Tr showed different trend. Therefore, spraying IAA effectively changed the photosynthetic pigment contents and photosynthesis parameters in lettuce.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


2021 ◽  
Author(s):  
Arnaud-Thierry Djami-Tchatchou ◽  
Zipeng Alex Li ◽  
Paul Stodghill ◽  
Melanie J. Filiatrault ◽  
Barbara N. Kunkel

The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 ( Pto DC3000). To learn more about the impact of IAA on regulation of Pto DC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta . Collectively the data indicate that IAA modulates many aspects of Pto DC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain Pto DC000 and one of its hosts, Arabidopsis thaliana . However, the mechanisms by which IAA impacts the biology of Pto DC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in Pto DC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 904 ◽  
Author(s):  
Zhong-Wei Zhang ◽  
Yi-Ying Dong ◽  
Ling-Yang Feng ◽  
Zong-Lin Deng ◽  
Qiang Xu ◽  
...  

Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications. Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However, the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level per plant, because dry weight increased about four times more with Se and Cd application than with Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in the organelle part was reduced.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 247 ◽  
Author(s):  
Muhammad Umer Farooq ◽  
Zhichen Tang ◽  
Tengda Zheng ◽  
Muhammad Ahsan Asghar ◽  
Rui Zeng ◽  
...  

Cadmium (Cd) is a well-known metal imposing threats to human health, and it can be accumulated in polished rice over the permitted range of 0.2 mg kg−1 (GB 2762-2017). It has been reported that selenium (Se) application decreases Cd uptake. Se-rich diets have gained attention recently, but the potential of Se-rich rice in mitigating Cd stress needs further investigation. In this study, a pot experiment in the field was conducted to assess the influence of environmental factors and exogenous split application of Se on the nutritional status of rice under Cd stress. The results indicated that the increased fertilizer treatment in soil bulk linearly increased the metal content in rice grains. Approximately 50–70% of metal was recovered in rice tissues, while 5–20% of the metal that was applied leached down into the soil. A Se concentration of 0.4 mg kg−1 could significantly improve the total Se content in grain and mitigate Cd toxicity (1 mg kg−1) below the permitted range. Panicles and roots were more active for total Se accumulation in Se-rich and non-Se-rich rice, respectively. Polishing and milling operations can significantly reduce the Cd content, as rice bran in rice tissues accumulated most of the metal’s residues. The late matured rice cultivars consumed more heat units, and more metal contents were found in them. Collectively, it was found that Se can mitigate Cd toxicity, but the rice cultivation at T2 (high Cd; 2 mg kg−1 and Se; 1 mg kg−1) increased the metal uptake capability and health-risk index in polished rice, with its Se content heightened over permitted range of 0.04 to 0.30 mg kg−1 (GB/T 22499-2008). However, further molecular studies are required, in order to completely access the inverted Se accumulation behavior in rice tissues at high Cd soil stress.


2010 ◽  
Vol 76 (14) ◽  
pp. 4626-4632 ◽  
Author(s):  
Carmen Bianco ◽  
Roberto Defez

ABSTRACT Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation.


1956 ◽  
Vol 34 (6) ◽  
pp. 825-829 ◽  
Author(s):  
Franziska L. M. Turel ◽  
Mary M. Howes

A tissue culture was obtained from the cells around the vein of a piece of normal safflower leaf. The tissue has now been transferred monthly for two and one-half years. Growth was measured on White's, Knop's, and Heller's media with and without 0.1 mgm. indole-3-acetic acid per liter and/or 10% coconut milk. Indole-3-acetic acid had no effect but coconut milk greatly enhanced growth. Heller's medium plus coconut milk was the best for growth of the leaf tissue. The addition of coconut milk to White's medium caused a decrease in percentage of dry weight of the leaf tissue culture, whereas its addition to Heller's medium had no such effect.


1986 ◽  
Vol 64 (11) ◽  
pp. 2716-2718 ◽  
Author(s):  
A. Raymond Miller ◽  
Lorin W. Roberts

The possible relationship between tracheary element number and lignin content was studied in cultured soybean (Glycine max L. var. Wayne) cotyledon callus. Callus initiated on 4.5 μM 2,4-dichlorophenoxyacetic acid contained 3.0 × 104 tracheary elements per gram fresh weight and 41 μg lignin per milligram dry weight after 10 days incubation, and these values did not vary significantly after two subsequent transfers (7 days each) to a medium containing 0.1 μM α-naphthaleneacetic acid and 0.01 μM kinetin. Transfer of this callus to a medium supplemented with 60 μM indole-3-acetic acid and 0.5 μM kinetin resulted in significant increases in tracheary element number and lignin content (290 and 56%, respectively). A time-course study revealed that both tracheary element number and lignin content reached a maximum 5 to 6 days after transfer to the medium containing indole-3-acetic acid and kinetin. However, when total callus lignin content was plotted against total tracheary element number, no statistically significant relationship was found. The formation of lignin not associated with tracheary elements may have been a factor. These results indicate that the induction of tracheary element formation and lignification in soybean callus have similar hormonal requirements, but lignification occurs independently of tracheary element formation in this system.


Sign in / Sign up

Export Citation Format

Share Document