scholarly journals Resting-state “Physiological Networks”

2019 ◽  
Author(s):  
Jingyuan E. Chen ◽  
Laura D. Lewis ◽  
Catie Chang ◽  
Nina E. Fultz ◽  
Ned A. Ohringer ◽  
...  

AbstractSlow changes in systemic brain physiology can elicit large fluctuations in fMRI time series, which may manifest as structured spatial patterns of temporal correlations between distant brain regions. These correlations can appear similar to large-scale networks typically attributed to coupled neuronal activity. However, little effort has been devoted to a systematic investigation of such “physiological networks”—sets of segregated brain regions that exhibit similar physiological responses—and their potential influence on estimates of resting-state brain networks. Here, by analyzing a large group of subjects from the 3T Human Connectome Project database, we demonstrate brain-wide and noticeably heterogenous dynamics attributable to either respiratory variation or heart rate changes. We show that these physiologic dynamics can give rise to apparent “connectivity” patterns that resemble previously reported resting-state networks derived from fMRI data. Further, we show that this apparent “physiological connectivity” cannot be removed by the use of a single nuisance regressor for the entire brain (such as global signal regression) due to the clear regional heterogeneity of the physiological responses. Possible mechanisms causing these apparent “physiological networks”, and their broad implications for interpreting functional connectivity studies are discussed.

2019 ◽  
Author(s):  
Narges Moradi ◽  
Mehdy Dousty ◽  
Roberto C. Sotero

AbstractResting-state functional connectivity MRI (rs-fcMRI) is a common method for mapping functional brain networks. However, estimation of these networks is affected by the presence of a common global systemic noise, or global signal (GS). Previous studies have shown that the common preprocessing steps of removing the GS may create spurious correlations between brain regions. In this paper, we decompose fMRI signals into 5 spatial and 3 temporal intrinsic mode functions (SIMF and TIMF, respectively) by means of the empirical mode decomposition (EMD), which is an adaptive data-driven method widely used to analyze nonlinear and nonstationary phenomena. For each SIMF, brain connectivity matrices were computed by means of the Pearson correlation between TIMFs of different brain areas. Thus, instead of a single connectivity matrix, we obtained 5 × 3 = 15 functional connectivity matrices. Given the high value obtained for large-scale topological measures such as transitivity, in the low spatial maps (SIMF3, SIMF4, and SIMF5), our results suggest that these maps can be considered as spatial global signal masks. Thus, the spatiotemporal EMD of fMRI signals automatically regressed out the GS, although, interestingly, the removed noisy component was voxel-specific. We compared the performance of our method with the conventional GS regression and to the results when the GS was not removed. While the correlation pattern identified by the other methods suffers from a low level of precision, our approach demonstrated a high level of accuracy in extracting the correct correlation between different brain regions.


2017 ◽  
Author(s):  
Behnaz Yousefi ◽  
Jaemin Shin ◽  
Eric H. Schumacher ◽  
Shella D. Keilholz

AbstractQuasiperiodic patterns (QPPs) as reported by Majeed et al., 2011 are prominent features of the brain’s intrinsic activity that involve important large-scale networks (default mode, DMN; task positive, TPN) and are likely to be major contributors to widely used measures of functional connectivity. We examined the variability of these patterns in 470 individuals from the Human Connectome Project resting state functional MRI dataset. The QPPs from individuals can be coarsely categorized into two types: one where strong anti-correlation between the DMN and TPN is present, and another where most areas are strongly correlated. QPP type could be predicted by an individual’s global signal, with lower global signal corresponding to QPPs with strong anti-correlation. After regression of global signal, all QPPs showed strong anti-correlation between DMN and TPN. QPP occurrence and type was similar between a subgroup of individuals with extremely low motion (or even high motion) and the rest of the sample, which shows that motion is not a major contributor to the QPPs. After regression of estimates of slow respiratory and cardiac induced signal fluctuations, more QPPs showed strong anti-correlation between DMN and TPN, an indication that while physiological noise influences the QPP type, it is not the primary source of the QPP itself. QPPs were more similar for the same subjects scanned on different days than for different subjects. These results provide the first assessment of the variability in individual QPPs and their relationship to physiological parameters.


2016 ◽  
Vol 113 (17) ◽  
pp. 4824-4829 ◽  
Author(s):  
Matteo Martino ◽  
Paola Magioncalda ◽  
Zirui Huang ◽  
Benedetta Conio ◽  
Niccolò Piaggio ◽  
...  

Depressive and manic phases in bipolar disorder show opposite constellations of affective, cognitive, and psychomotor symptoms. At a neural level, these may be related to topographical disbalance between large-scale networks, such as the default mode network (DMN) and sensorimotor network (SMN). We investigated topographical patterns of variability in the resting-state signal—measured by fractional SD (fSD) of the BOLD signal—of the DMN and SMN (and other networks) in two frequency bands (Slow5 and Slow4) with their ratio and clinical correlations in depressed (n = 20), manic (n = 20), euthymic (n = 20) patients, and healthy controls (n = 40). After controlling for global signal changes, the topographical balance between the DMN and SMN, specifically in the lowest frequency band, as calculated by the Slow5 fSD DMN/SMN ratio, was significantly increased in depression, whereas the same ratio was significantly decreased in mania. Additionally, Slow5 variability was increased in the DMN and decreased in the SMN in depressed patients, whereas the opposite topographical pattern was observed in mania. Finally, the Slow5 fSD DMN/SMN ratio correlated positively with clinical scores of depressive symptoms and negatively with those of mania. Results were replicated in a smaller independent bipolar disorder sample. We demonstrated topographical abnormalities in frequency-specific resting-state variability in the balance between DMN and SMN with opposing patterns in depression and mania. The Slow5 DMN/SMN ratio was tilted toward the DMN in depression but was shifted toward the SMN in mania. The Slow5 fSD DMN/SMN pattern could constitute a state-biomarker in diagnosis and therapy.


2019 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zirui Huang ◽  
Shankar Tumati ◽  
Georg Northoff

AbstractRecent resting-state fMRI studies have revealed that the global signal (GS) exhibits a non-uniform spatial distribution across the gray matter. Whether this topography is informative remains largely unknown. We therefore tested rest-task modulation of global signal topography by analyzing static global signal correlation and dynamic co-activation patterns in a large sample of fMRI dataset (n=837) from the Human Connectome Project. The GS topography in the resting-state and in seven different tasks was first measured by correlating the global signal with the local timeseries (GSCORR). In the resting state, high GSCORR was observed mainly in the primary sensory and motor regions, while low GSCORR was seen in the association brain areas. This pattern changed during the seven tasks, with mainly decreased GSCORR in sensorimotor cortex. Importantly, this rest-task modulation of GSCORR could be traced to transient co-activation patterns at the peak period of global signal (GS-peak). By comparing the topography of GSCORR and respiration effects, we observed that the topography of respiration mimicked the topography of global signal in the resting-state whereas both differed during the task states; due to such partial dissociation, we assume that GSCORR could not be equated with a respiration effect. Finally, rest-task modulation of GS topography could not be exclusively explained by other sources of physiological noise. Together, we here demonstrate the informative nature of global signal topography by showing its rest-task modulation, the underlying dynamic co-activation patterns, and its partial dissociation from respiration effects during task states.


2019 ◽  
Vol 30 (2) ◽  
pp. 824-835 ◽  
Author(s):  
Susanne Weis ◽  
Kaustubh R Patil ◽  
Felix Hoffstaedter ◽  
Alessandra Nostro ◽  
B T Thomas Yeo ◽  
...  

Abstract A large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.


2019 ◽  
Vol 30 (3) ◽  
pp. 1716-1734 ◽  
Author(s):  
Ryan V Raut ◽  
Anish Mitra ◽  
Scott Marek ◽  
Mario Ortega ◽  
Abraham Z Snyder ◽  
...  

Abstract Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks—altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.


2020 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Claudio Imperatori ◽  
Chiara Massullo ◽  
Giuseppe Alessio Carbone ◽  
Angelo Panno ◽  
Marta Giacchini ◽  
...  

An increasing body of experimental data have suggested that aberrant functional interactions between large-scale networks may be the most plausible explanation of psychopathology across multiple mental disorders, including substance-related and addictive disorders. In the current research, we have investigated the association between problematic cannabis use (PCU) and triple-network electroencephalographic (EEG) functional connectivity. Twelve participants with PCU and 24 non-PCU participants were included in the study. EEG recordings were performed during resting state (RS). The exact Low-Resolution Electromagnetic Tomography software (eLORETA) was used for all EEG analyses. Compared to non-PCU, PCU participants showed an increased delta connectivity between the salience network (SN) and central executive network (CEN), specifically, between the dorsal anterior cingulate cortex and right posterior parietal cortex. The strength of delta connectivity between the SN and CEN was positively and significantly correlated with higher problematic patterns of cannabis use after controlling for age, sex, educational level, tobacco use, problematic alcohol use, and general psychopathology (rp = 0.40, p = 0.030). Taken together, our results show that individuals with PCU could be characterized by a specific dysfunctional interaction between the SN and CEN during RS, which might reflect the neurophysiological underpinnings of attentional and emotional processes of cannabis-related thoughts, memories, and craving.


2017 ◽  
Vol 1 (4) ◽  
pp. 253-255 ◽  
Author(s):  
Caleb Smith ◽  
Roohi Baveja ◽  
Teri Grieb ◽  
George A. Mashour

Translational research as a discipline has experienced explosive growth over the last decade as evidenced by significant federal investment and the exponential increase in related publications. However, narrow project-focused or process-based measurement approaches have resulted in insufficient techniques to measure the translational progress of institutions or large-scale networks. A shift from traditional industrial engineering approaches to systematic investigation using the techniques of scientometrics and network science will be required to assess the impact of investments in translational research.


2020 ◽  
Author(s):  
David M. Cole ◽  
Bahram Mohammadi ◽  
Maria Milenkova ◽  
Katja Kollewe ◽  
Christoph Schrader ◽  
...  

ABSTRACTDopamine agonist (DA) medications commonly used to treat, or ‘normalise’, motor symptoms of Parkinson’s disease (PD) may lead to cognitive-neuropsychiatric side effects, such as increased impulsivity in decision-making. Subject-dependent variation in the neural response to dopamine modulation within cortico-basal ganglia circuitry is thought to play a key role in these latter, non-motor DA effects. This neuroimaging study combined resting-state functional magnetic resonance imaging (fMRI) with DA modification in patients with idiopathic PD, investigating whether brain ‘resting-state network’ (RSN) functional connectivity metrics identify disease-relevant effects of dopamine on systems-level neural processing. By comparing patients both ‘On’ and ‘Off’ their DA medications with age-matched, un-medicated healthy control subjects (HCs), we identified multiple non-normalising DA effects on frontal and basal ganglia RSN cortico-subcortical connectivity patterns in PD. Only a single isolated, potentially ‘normalising’, DA effect on RSN connectivity in sensori-motor systems was observed, within cerebro-cerebellar neurocircuitry. Impulsivity in reward-based decision-making was positively correlated with ventral striatal connectivity within basal ganglia circuitry in HCs, but not in PD patients. Overall, we provide brain systems-level evidence for anomalous DA effects in PD on large-scale networks supporting cognition and motivated behaviour. Moreover, findings suggest that dysfunctional striatal and basal ganglia signalling patterns in PD are compensated for by increased recruitment of other cortico-subcortical and cerebro-cerebellar systems.


2020 ◽  
Author(s):  
Jakub Kopal ◽  
Jaroslav Hlinka ◽  
Elodie Despouy ◽  
Luc Valton ◽  
Marie Denuelle ◽  
...  

Recognition memory is the ability to recognize previously encountered events, objects, or people. It is characterized by its robustness and rapidness. Even this relatively simple ability requires the coordinated activity of a surprisingly large number of brain regions. These spatially distributed, but functionally linked regions are interconnected into large-scale networks. Understanding memory requires an examination of the involvement of these networks and the interactions between different regions while memory processes unfold. However, little is known about the dynamical organization of large-scale networks during the early phases of recognition memory. We recorded intracranial EEG, which affords high temporal and spatial resolution, while epileptic subjects performed a visual recognition memory task. We analyzed dynamic functional and effective connectivity as well as network properties. Various networks were identified, each with its specific characteristics regarding information flow (feedforward or feedback), dynamics, topology, and stability. The first network mainly involved the right visual ventral stream and bilateral frontal regions. It was characterized by early predominant feedforward activity, modular topology, and high stability. It was followed by the involvement of a second network, mainly in the left hemisphere, but notably also involving the right hippocampus, characterized by later feedback activity, integrated topology, and lower stability. The transition between networks was associated with a change in network topology. Overall, these results confirm that several large-scale brain networks, each with specific properties and temporal manifestation, are involved during recognition memory. Ultimately, understanding how the brain dynamically faces rapid changes in cognitive demand is vital to our comprehension of the neural basis of cognition.


Sign in / Sign up

Export Citation Format

Share Document