scholarly journals Dynamics between horizontal gene transfer and acquired antibiotic resistance in S. Heidelberg following in vitro incubation in broiler ceca

2019 ◽  
Author(s):  
Adelumola Oladeinde ◽  
Kimberly Cook ◽  
Steven M. Lakin ◽  
Zaid Abdo ◽  
Torey Looft ◽  
...  

AbstractThe chicken gastrointestinal tract harbors taxa of microorganisms that play a role in the health and disease status of the host. The cecum is the part of the gut that carries the highest microbial densities, has the longest residence time of digesta and is a vital site for urea recycling and water regulation. Therefore, the cecum provides a rich environment for bacteria to horizontally transfer genes between one another via mobile genetic elements such as plasmids and bacteriophages. In this study, we used broiler chicken cecum as a model to investigate antibiotic resistance genes that can be transferred in vitro from ceca flora to Salmonella enterica serovar Heidelberg (S. Heidelberg). We used whole genome sequencing and resistome enrichment to decipher the interactions between S. Heidelberg, gut microbiome and acquired antibiotic resistance. After 48 h incubation of ceca under microaerophilic conditions, one S. Heidelberg isolate was recovered with an acquired Inck2 plasmid (88 kb) encoding extended β-lactamase producing gene (blaCMY-2). In vitro, this plasmid was transferrable between E. coli and S. Heidelberg strains, but transfer was unsuccessful between S. Heidelberg strains. An in-depth genetic characterization of transferred plasmids suggests that they share significant homology with P1-like phages. This study contributes to our understanding of the dynamics between an important food-borne pathogen and the chicken gut microbiome.ImportanceS. Heidelberg is a clinically important serovar, linked to food-borne illness and among the top 5 serovars isolated from poultry in USA and Canada. Acquisition of new genetic material from microbial flora in the gastrointestinal tract of food animals, including broilers, may contribute to increased fitness of pathogens like S. Heidelberg and may increase their level of antibiotic tolerance. Therefore, it is critical to gain a better understanding on the dynamic interactions that occur between important pathogens and the commensals present in the animal gut and other agroecosystems. In this study, we show that the native flora in the broiler ceca were capable of transferring mobile genetic elements carrying AmpC β-lactamase (blaCMY-2) gene to an important food-borne pathogen S. Heidelberg. The potential role for P1-like bacteriophage transduction was also discussed.

2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Adelumola Oladeinde ◽  
Kimberly Cook ◽  
Steven M. Lakin ◽  
Reed Woyda ◽  
Zaid Abdo ◽  
...  

ABSTRACT The chicken gastrointestinal tract harbors microorganisms that play a role in the health and disease status of the host. The cecum is the part of the gut that carries the highest microbial densities, has the longest residence time of digesta, and is a vital site for urea recycling and water regulation. Therefore, the cecum provides a rich environment for bacteria to horizontally transfer genes between one another via mobile genetic elements such as plasmids and bacteriophages. In this study, we used broiler chicken cecum as a model to investigate antibiotic resistance genes that can be transferred in vitro from cecal flora to Salmonella enterica serovar Heidelberg. We used whole-genome sequencing and resistome enrichment to decipher the interactions between S. Heidelberg, the gut microbiome, and acquired antibiotic resistance. After 48 h of incubation of ceca under microaerophilic conditions, we recovered one S. Heidelberg isolate with an acquired IncK2 plasmid (88 kb) carrying an extended-spectrum-β-lactamase gene (blaCMY-2). In vitro, this plasmid was transferable between Escherichia coli and S. Heidelberg strains but transfer was unsuccessful between S. Heidelberg strains. An in-depth genetic characterization of transferred plasmids suggests that they share significant homology with P1-like phages. This study contributes to our understanding of horizontal gene transfer between an important foodborne pathogen and the chicken gut microbiome. IMPORTANCE S. Heidelberg is a clinically important serovar, linked to foodborne illness and among the top 5 serovars isolated from poultry in the United States and Canada. Acquisition of new genetic material from the microbial flora in the gastrointestinal tract of food animals, including broilers, may contribute to increased fitness of pathogens like S. Heidelberg and may increase their level of antibiotic tolerance. Therefore, it is critical to gain a better understanding of the interactions that occur between important pathogens and the commensals present in the animal gut and other agroecosystems. In this report, we show that the native flora in broiler ceca were capable of transferring mobile genetic elements carrying the AmpC β-lactamase (blaCMY-2) gene to an important foodborne pathogen, S. Heidelberg. The potential role for bacteriophage transduction is also discussed.


2021 ◽  
Author(s):  
Elizabeth Pursey ◽  
Tatiana Dimitriu ◽  
Fernanda L. Paganelli ◽  
Edze R. Westra ◽  
Stineke van Houte

AbstractThe acquisition of antibiotic resistance genes via horizontal gene transfer is a key driver of the rise in multidrug resistance amongst bacterial pathogens. Bacterial defence systems per definition restrict the influx of foreign genetic material, and may therefore limit the acquisition of antibiotic resistance. CRISPR-Cas adaptive immune systems are one of the most prevalent defences in bacteria, found in roughly half of bacterial genomes, but it has remained unclear if and how much they contribute to restricting the spread of antibiotic resistance. We analysed ~40,000 whole genomes comprising the full RefSeq dataset for 11 species of clinically important genera of human pathogens including Enterococcus, Staphylococcus, Acinetobacter and Pseudomonas. We modelled the association between CRISPR-Cas and indicators of horizontal gene transfer, and found that pathogens with a CRISPR-Cas system were less likely to carry antibiotic resistance genes than those lacking this defence system. Analysis of the mobile genetic elements targeted by CRISPR-Cas supports a model where this host defence system blocks important vectors of antibiotic resistance. These results suggest a potential “immunocompromised” state for multidrug-resistant strains that may be exploited in tailored interventions that rely on mobile genetic elements, such as phage or phagemids, to treat infections caused by bacterial pathogens.


Author(s):  
Elizabeth Pursey ◽  
Tatiana Dimitriu ◽  
Fernanda L. Paganelli ◽  
Edze R. Westra ◽  
Stineke van Houte

The acquisition of antibiotic resistance (ABR) genes via horizontal gene transfer (HGT) is a key driver of the rise in multidrug resistance amongst bacterial pathogens. Bacterial defence systems per definition restrict the influx of foreign genetic material, and may therefore limit the acquisition of ABR. CRISPR-Cas adaptive immune systems are one of the most prevalent defences in bacteria, found in roughly half of bacterial genomes, but it has remained unclear if and how much they contribute to restricting the spread of ABR. We analysed approximately 40 000 whole genomes comprising the full RefSeq dataset for 11 species of clinically important genera of human pathogens, including Enterococcus , Staphylococcus , Acinetobacter and Pseudomonas . We modelled the association between CRISPR-Cas and indicators of HGT, and found that pathogens with a CRISPR-Cas system were less likely to carry ABR genes than those lacking this defence system. Analysis of the mobile genetic elements (MGEs) targeted by CRISPR-Cas supports a model where this host defence system blocks important vectors of ABR. These results suggest a potential ‘immunocompromised’ state for multidrug-resistant strains that may be exploited in tailored interventions that rely on MGEs, such as phages or phagemids, to treat infections caused by bacterial pathogens. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


2017 ◽  
Author(s):  
Xiaofang Jiang ◽  
Andrew Brantley Hall ◽  
Ramnik J. Xavier ◽  
Eric Alm

AbstractMobile genetic elements (MGEs) drive extensive horizontal transfer in the gut microbiome. This transfer could benefit human health by conferring new metabolic capabilities to commensal microbes, or it could threaten human health by spreading antibiotic resistance genes to pathogens. Despite their biological importance and medical relevance, MGEs from the gut microbiome have not been systematically characterized. Here, we present a comprehensive analysis of chromosomal MGEs in the gut microbiome using a method called Split Read Insertion Detection (SRID) that enables the identification of the exact mobilizable unit of MGEs. Leveraging the SRID method, we curated a database of 5600 putative MGEs encompassing seven MGE classes called ImmeDB (Intestinal microbiome mobile element database) (https://immedb.mit.edu/). We observed that many MGEs carry genes that confer an adaptive advantage to the gut environment including gene families involved in antibiotic resistance, bile salt detoxification, mucus degradation, capsular polysaccharide biosynthesis, polysaccharide utilization, and sporulation. We find that antibiotic resistance genes are more likely to be spread by conjugation via integrative conjugative elements or integrative mobilizable elements than transduction via prophages. Additionally, we observed that horizontal transfer of MGEs is extensive within phyla but rare across phyla. Taken together, our findings support a phylum level niche-adaptive gene pools in the gut microbiome. ImmeDB will be a valuable resource for future fundamental and translational studies on the gut microbiome and MGE communities.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Johannes Cairns ◽  
Katariina Koskinen ◽  
Reetta Penttinen ◽  
Tommi Patinen ◽  
Anna Hartikainen ◽  
...  

ABSTRACTMobile genetic elements such as conjugative plasmids are responsible for antibiotic resistance phenotypes in many bacterial pathogens. The ability to conjugate, the presence of antibiotics, and ecological interactions all have a notable role in the persistence of plasmids in bacterial populations. Here, we set out to investigate the contribution of these factors when the conjugation network was disturbed by a plasmid-dependent bacteriophage. Phage alone effectively caused the population to lose plasmids, thus rendering them susceptible to antibiotics. Leakiness of the antibiotic resistance mechanism allowing Black Queen evolution (i.e. a “race to the bottom”) was a more significant factor than the antibiotic concentration (lethal vs sublethal) in determining plasmid prevalence. Interestingly, plasmid loss was also prevented by protozoan predation. These results show that outcomes of attempts to resensitize bacterial communities by disrupting the conjugation network are highly dependent on ecological factors and resistance mechanisms.IMPORTANCEBacterial antibiotic resistance is often a part of mobile genetic elements that move from one bacterium to another. By interfering with the horizontal movement and the maintenance of these elements, it is possible to remove the resistance from the population. Here, we show that a so-called plasmid-dependent bacteriophage causes the initially resistant bacterial population to become susceptible to antibiotics. However, this effect is efficiently countered when the system also contains a predator that feeds on bacteria. Moreover, when the environment contains antibiotics, the survival of resistance is dependent on the resistance mechanism. When bacteria can help their contemporaries to degrade antibiotics, resistance is maintained by only a fraction of the community. On the other hand, when bacteria cannot help others, then all bacteria remain resistant. The concentration of the antibiotic played a less notable role than the antibiotic used. This report shows that the survival of antibiotic resistance in bacterial communities represents a complex process where many factors present in real-life systems define whether or not resistance is actually lost.


2016 ◽  
Vol 25 (5) ◽  
pp. 1027-1031 ◽  
Author(s):  
Irina R. Arkhipova ◽  
Phoebe A. Rice

Sign in / Sign up

Export Citation Format

Share Document