scholarly journals Heterogeneity in Nucleosome Spacing Governs Chromatin Elasticity

2019 ◽  
Author(s):  
Bruno Beltran ◽  
Deepti Kannan ◽  
Quinn MacPherson ◽  
Andrew J. Spakowitz

Within a living cell, the myriad of proteins that bind DNA introduce heterogeneously spaced kinks into an otherwise semiflexible DNA double helix. To investigate the effects of heterogeneous nucleosome binding on chromatin organization, we extend the wormlike chain (WLC) model to include statistically spaced, rigid kinks. On time scales where nucleosome positions are fixed, we find that the probability of chromatin loop formation can differ by up to six orders of magnitude between two sets of nucleosome positions drawn from the same distribution. On longer time scales, we show that continuous re-randomization due to nucleosome turnover results in chromatin tracing out an effective WLC with a dramatically smaller Kuhn length than bare DNA. Together, these observations demonstrate that heterogeneity in nucleosome spacing acts as the dominant source of chromatin elasticity and governs both local and global chromatin organization.

Within a living cell there take place a large number and variety of biochemical processes, almost all of which involve large molecules, particularly proteins and nucleic acids. These macromolecules often interact to form ordered aggregates or specific complexes. A number of examples are discussed which show how different kinds of order develop on grounds of geometrical or physical necessity or for reasons of functional efficiency. Examples are taken from the structure and assembly of simple viruses and the higher-order organization of the DNA double helix in chromosomes.


2020 ◽  
Vol 117 (11) ◽  
pp. 5853-5860 ◽  
Author(s):  
Ivan E. Ivanov ◽  
Addison V. Wright ◽  
Joshua C. Cofsky ◽  
Kevin D. Palacio Aris ◽  
Jennifer A. Doudna ◽  
...  

The CRISPR-Cas9 nuclease has been widely repurposed as a molecular and cell biology tool for its ability to programmably target and cleave DNA. Cas9 recognizes its target site by unwinding the DNA double helix and hybridizing a 20-nucleotide section of its associated guide RNA to one DNA strand, forming an R-loop structure. A dynamic and mechanical description of R-loop formation is needed to understand the biophysics of target searching and develop rational approaches for mitigating off-target activity while accounting for the influence of torsional strain in the genome. Here we investigate the dynamics of Cas9 R-loop formation and collapse using rotor bead tracking (RBT), a single-molecule technique that can simultaneously monitor DNA unwinding with base-pair resolution and binding of fluorescently labeled macromolecules in real time. By measuring changes in torque upon unwinding of the double helix, we find that R-loop formation and collapse proceed via a transient discrete intermediate, consistent with DNA:RNA hybridization within an initial seed region. Using systematic measurements of target and off-target sequences under controlled mechanical perturbations, we characterize position-dependent effects of sequence mismatches and show how DNA supercoiling modulates the energy landscape of R-loop formation and dictates access to states competent for stable binding and cleavage. Consistent with this energy landscape model, in bulk experiments we observe promiscuous cleavage under physiological negative supercoiling. The detailed description of DNA interrogation presented here suggests strategies for improving the specificity and kinetics of Cas9 as a genome engineering tool and may inspire expanded applications that exploit sensitivity to DNA supercoiling.


Author(s):  
D.P. Bazett-Jones ◽  
F.P. Ottensmeyer

Dark field electron microscopy has been used for the study of the structure of individual macromolecules with a resolution to at least the 5Å level. The use of this technique has been extended to the investigation of structure of interacting molecules, particularly the interaction between DNA and fish protamine, a class of basic nuclear proteins of molecular weight 4,000 daltons.Protamine, which is synthesized during spermatogenesis, binds to chromatin, displaces the somatic histones and wraps up the DNA to fit into the small volume of the sperm head. It has been proposed that protamine, existing as an extended polypeptide, winds around the minor groove of the DNA double helix, with protamine's positively-charged arginines lining up with the negatively-charged phosphates of DNA. However, viewing protamine as an extended protein is inconsistent with the results obtained in our laboratory.


2004 ◽  
Vol 69 (4) ◽  
pp. 715-747 ◽  
Author(s):  
Miroslav Fojta

This review is devoted to applications of mercury electrodes in the electrochemical analysis of nucleic acids and in studies of DNA structure and interactions. At the mercury electrodes, nucleic acids yield faradaic signals due to redox processes involving adenine, cytosine and guanine residues, and tensammetric signals due to adsorption/desorption of polynucleotide chains at the electrode surface. Some of these signals are highly sensitive to DNA structure, providing information about conformation changes of the DNA double helix, formation of DNA strand breaks as well as covalent or non-covalent DNA interactions with small molecules (including genotoxic agents, drugs, etc.). Measurements at mercury electrodes allow for determination of small quantities of unmodified or electrochemically labeled nucleic acids. DNA-modified mercury electrodes have been used as biodetectors for DNA damaging agents or as detection electrodes in DNA hybridization assays. Mercury film and solid amalgam electrodes possess similar features in the nucleic acid analysis to mercury drop electrodes. On the contrary, intrinsic (label-free) DNA electrochemical responses at other (non-mercury) solid electrodes cannot provide information about small changes of the DNA structure. A review with 188 references.


Sign in / Sign up

Export Citation Format

Share Document