scholarly journals Fast and robust ancestry prediction using principal component analysis

2019 ◽  
Author(s):  
Daiwei Zhang ◽  
Rounak Dey ◽  
Seunggeun Lee

AbstractPopulation stratification (PS) is a major confounder in genome-wide association studies (GWAS) and can lead to false positive associations. To adjust for PS, principal component analysis (PCA)-based ancestry prediction has been widely used. Simple projection (SP) based on principal component loading and recently developed data augmentation-decomposition-transformation (ADP), such as LASER and TRACE, are popular methods for predicting PC scores. However, they are either biased or computationally expensive. The predicted PC scores from SP can be biased toward NULL. On the other hand, since ADP requires running PCA separately for each study sample on the augmented data set, its computational cost is high. To address these problems, we develop and propose two alternative approaches, bias-adjusted projection (AP) and online ADP (OADP). Using random matrix theory, AP asymptotically estimates and adjusts for the bias of SP. OADP uses computationally efficient online singular value decomposition, which can greatly reduce the computation cost of ADP. We carried out extensive simulation studies to show that these alternative approaches are unbiased and the computation times can be 10-100 times faster than ADP. We applied our approaches to UK-Biobank data of 488,366 study samples with 2,492 samples from the 1000 Genomes data as the reference. AP and OADP required 7 and 75 CPU hours, respectively, while the projected computation time of ADP is 2,534 CPU hours. Furthermore, when we only used the European reference samples in the 1000 Genomes to infer sub-European ancestry, SP clearly showed bias, unlike the proposed approaches. By using AP and OADP, we can infer ancestry and adjust for PS robustly and efficiently.

2020 ◽  
Vol 36 (11) ◽  
pp. 3439-3446 ◽  
Author(s):  
Daiwei Zhang ◽  
Rounak Dey ◽  
Seunggeun Lee

Abstract Motivation Population stratification (PS) is a major confounder in genome-wide association studies (GWAS) and can lead to false-positive associations. To adjust for PS, principal component analysis (PCA)-based ancestry prediction has been widely used. Simple projection (SP) based on principal component loadings and the recently developed data augmentation, decomposition and Procrustes (ADP) transformation, such as LASER and TRACE, are popular methods for predicting PC scores. However, the predicted PC scores from SP can be biased toward NULL. On the other hand, ADP has a high computation cost because it requires running PCA separately for each study sample on the augmented dataset. Results We develop and propose two alternative approaches: bias-adjusted projection (AP) and online ADP (OADP). Using random matrix theory, AP asymptotically estimates and adjusts for the bias of SP. OADP uses a computationally efficient online singular value decomposition algorithm, which can greatly reduce the computation cost of ADP. We carried out extensive simulation studies to show that these alternative approaches are unbiased and the computation speed can be 16–16 000 times faster than ADP. We applied our approaches to the UK Biobank data of 488 366 study samples with 2492 samples from the 1000 Genomes data as the reference. AP and OADP required 0.82 and 21 CPU hours, respectively, while the projected computation time of ADP was 1628 CPU hours. Furthermore, when inferring sub-European ancestry, SP clearly showed bias, unlike the proposed approaches. Availability and implementation The OADP and AP methods, as well as SP and ADP, have been implemented in the open-source Python software FRAPOSA, available at github.com/daviddaiweizhang/fraposa. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 94 (5) ◽  
pp. 662-676 ◽  
Author(s):  
Hugues Aschard ◽  
Bjarni J. Vilhjálmsson ◽  
Nicolas Greliche ◽  
Pierre-Emmanuel Morange ◽  
David-Alexandre Trégouët ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1147
Author(s):  
Asha M. Miles ◽  
Christian J. Posbergh ◽  
Heather J. Huson

Our objectives were to robustly characterize a cohort of Holstein cows for udder and teat type traits and perform high-density genome-wide association studies for those traits within the same group of animals, thereby improving the accuracy of the phenotypic measurements and genomic association study. Additionally, we sought to identify a novel udder and teat trait composite risk index to determine loci with potential pleiotropic effects related to mastitis. This approach was aimed at improving the biological understanding of the genetic factors influencing mastitis. Cows (N = 471) were genotyped on the Illumina BovineHD777k beadchip and scored for front and rear teat length, width, end shape, and placement; fore udder attachment; udder cleft; udder depth; rear udder height; and rear udder width. We used principal component analysis to create a single composite measure describing type traits previously linked to high odds of developing mastitis within our cohort of cows. Genome-wide associations were performed, and 28 genomic regions were significantly associated (Bonferroni-corrected p < 0.05). Interrogation of these genomic regions revealed a number of biologically plausible genes whicht may contribute to the development of mastitis and whose functions range from regulating cell proliferation to immune system signaling, including ZNF683, DHX9, CUX1, TNNT1, and SPRY1. Genetic investigation of the risk composite trait implicated a novel locus and candidate genes that have potentially pleiotropic effects related to mastitis.


2017 ◽  
Vol 727 ◽  
pp. 447-449 ◽  
Author(s):  
Jun Dai ◽  
Hua Yan ◽  
Jian Jian Yang ◽  
Jun Jun Guo

To evaluate the aging behavior of high density polyethylene (HDPE) under an artificial accelerated environment, principal component analysis (PCA) was used to establish a non-dimensional expression Z from a data set of multiple degradation parameters of HDPE. In this study, HDPE samples were exposed to the accelerated thermal oxidative environment for different time intervals up to 64 days. The results showed that the combined evaluating parameter Z was characterized by three-stage changes. The combined evaluating parameter Z increased quickly in the first 16 days of exposure and then leveled off. After 40 days, it began to increase again. Among the 10 degradation parameters, branching degree, carbonyl index and hydroxyl index are strongly associated. The tensile modulus is highly correlated with the impact strength. The tensile strength, tensile modulus and impact strength are negatively correlated with the crystallinity.


Sign in / Sign up

Export Citation Format

Share Document