scholarly journals Individuation of parts of a single object and multiple distinct objects relies on a common neural mechanism in inferior intraparietal sulcus

2019 ◽  
Author(s):  
Moritz F. Wurm ◽  
Katharine B. Porter ◽  
Alfonso Caramazza

AbstractObject identification and enumeration rely on the ability to distinguish, or individuate, objects from the background. Does multiple object individuation operate only over bounded, separable objects or does it operate equally over connected features within a single object? While previous fMRI experiments suggest that connectedness affects the processing and enumeration of objects, recent behavioral and EEG studies demonstrated that parallel individuation occurs over both object parts and distinct objects. However, it is unclear whether individuation of object parts and distinct objects relies on a common or independent neural mechanisms. Using fMRI-based multivariate pattern analyses, we here demonstrate that activity patterns in inferior and superior intraparietal sulci (IPS) encode numerosity independently of whether the individuated items are connected parts of a single object or distinct objects. Lateral occipital cortex is more sensitive to perceptual aspects of the two stimulus types and the targets of the stimuli, suggesting a dissociation between ventral and dorsal areas in representing perceptual object properties and more general information about numerosity, respectively. Our results suggest that objecthood is not a necessary prerequisite for parallel individuation in IPS. Rather, our results point toward a common individuation mechanism that selects targets over a flexible object hierarchy, independently of whether the targets are distinct separable objects or parts of a single object.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xiaojun Bao ◽  
Louise LG Raguet ◽  
Sydni M Cole ◽  
James D Howard ◽  
Jay A Gottfried

Distributed neural activity patterns are widely proposed to underlie object identification and categorization in the brain. In the olfactory domain, pattern-based representations of odor objects are encoded in piriform cortex. This region receives both afferent and associative inputs, though their relative contributions to odor perception are poorly understood. Here, we combined a placebo-controlled pharmacological fMRI paradigm with multivariate pattern analyses to test the role of associative connections in sustaining olfactory categorical representations. Administration of baclofen, a GABA(B) agonist known to attenuate piriform associative inputs, interfered with within-category pattern separation in piriform cortex, and the magnitude of this drug-induced change predicted perceptual alterations in fine-odor discrimination performance. Comparatively, baclofen reduced pattern separation between odor categories in orbitofrontal cortex, and impeded within-category generalization in hippocampus. Our findings suggest that odor categorization is a dynamic process concurrently engaging stimulus discrimination and generalization at different stages of olfactory information processing, and highlight the importance of associative networks in maintaining categorical boundaries.


2017 ◽  
Author(s):  
Bingbing Guo ◽  
Zhengang Lu ◽  
Jessica E. Goold ◽  
Huan Luo ◽  
Ming Meng

ABSTRACTThe brain dynamically creates predictions about upcoming stimuli to guide perception efficiently. Recent behavioral results suggest theta-band oscillations contribute to this prediction process, however litter is known about the underlying neural mechanism. Here, we combine fMRI and a time-resolved psychophysical paradigm to access fine temporal-scale profiles of the fluctuations of brain activation patterns corresponding to visual object priming. Specifically, multi-voxel activity patterns in the fusiform face area (FFA) and the parahippocampal place area (PPA) show temporal fluctuations at a theta-band (~5 Hz) rhythm. Importantly, the theta-band power in the FFA negatively correlates with reaction time, further indicating the critical role of the observed cortical theta oscillations. Moreover, alpha-band (~10 Hz) shows a dissociated spatial distribution, mainly linked to the occipital cortex. These findings, to our knowledge, are the first fMRI study that indicates temporal fluctuations of multi-voxel activity patterns and that demonstrates theta and alpha rhythms in relevant brain areas.


2017 ◽  
Author(s):  
Stefania Bracci ◽  
Ioannis Kalfas ◽  
Hans Op de Beeck

AbstractRecent studies showed agreement between how the human brain and neural networks represent objects, suggesting that we might start to understand the underlying computations. However, we know that the human brain is prone to biases at many perceptual and cognitive levels, often shaped by learning history and evolutionary constraints. Here we explore one such bias, namely the bias to perceive animacy, and used the performance of neural networks as a benchmark. We performed an fMRI study that dissociated object appearance (how an object looks like) from object category (animate or inanimate) by constructing a stimulus set that includes animate objects (e.g., a cow), typical inanimate objects (e.g., a mug), and, crucially, inanimate objects that look like the animate objects (e.g., a cow-mug). Behavioral judgments and deep neural networks categorized images mainly by animacy, setting all objects (lookalike and inanimate) apart from the animate ones. In contrast, activity patterns in ventral occipitotemporal cortex (VTC) were strongly biased towards object appearance: animals and lookalikes were similarly represented and separated from the inanimate objects. Furthermore, this bias interfered with proper object identification, such as failing to signal that a cow-mug is a mug. The bias in VTC to represent a lookalike as animate was even present when participants performed a task requiring them to report the lookalikes as inanimate. In conclusion, VTC representations, in contrast to neural networks, fail to veridically represent objects when visual appearance is dissociated from animacy, probably due to a biased processing of visual features typical of animate objects.


2016 ◽  
Author(s):  
Felix Fischer ◽  
Florian Pieper ◽  
Edgar Galindo-Leon ◽  
Gerhard Engler ◽  
Claus C. Hilgetag ◽  
...  

AbstractCortical activity patterns change in different depths of general anesthesia. Here we investigate the associated network level changes of functional connectivity. We recorded ongoing electrocorticographic (ECoG) activity from the ferret temporo-parieto-occipital cortex under various levels of isoflurane and determined the functional connectivity by computing amplitude envelope correlations. Through hierarchical clustering, we derived typical connectivity patterns corresponding to light, intermediate and deep anesthesia. Generally, amplitude correlation strength increased strongly with depth of anesthesia across all cortical areas and frequency bands. This was accompanied by the emergence of burstsuppression activity in the ECoG signal and a change of the spectrum of the amplitude envelope. Normalizing the functional connectivity patterns showed that the topographical structure remained similar across depths of anesthesia, resembling the functional association of the underlying cortical areas. Thus, while strength and temporal properties of amplitude co-modulation vary depending on the activity of local neural circuits, their network-level interaction pattern is presumably most strongly determined by the underlying structural connectivity.


2004 ◽  
Vol 10 (7) ◽  
pp. 939-947 ◽  
Author(s):  
CHAD H. MORITZ ◽  
STERLING C. JOHNSON ◽  
KATHRYN M. MCMILLAN ◽  
VICTOR M. HAUGHTON ◽  
M. ELIZABETH MEYERAND

The Hooper Visual Organization Test (VOT), a commonly applied neuropsychological test of visual spatial ability, is used for assessing patients with suspected right hemisphere, or parietal lobe involvement. A controversy has developed over whether the inferences of this test metric can be assumed to involve global, lateralized, or regional functionality. In this study, the characteristic visual organization and object naming aspects of the VOT task presentation were adapted to a functional MR imaging (fMRI) paradigm to probe the neuroanatomic correlates of this neuropsychological test. Whole brain fMRI mapping results are reported on a cohort of normal subjects. Bilateral fMRI responses were found predominantly in the posterior brain, in regions of superior parietal lobules, ventral temporal-occipital cortex, and posterior visual association areas, and to a lesser extent, the frontal eye fields bilaterally, and left dorsolateral prefrontal cortex. The results indicate a general brain region or network in which VOT impairment, due to its visuospatial and object identification demands, is possible to be detected. Discussion is made of interpretive limitations when adapting neuropsychological tests to fMRI analysis. (JINS, 2004, 10, 939–947.)


Perception ◽  
1993 ◽  
Vol 22 (2) ◽  
pp. 229-248 ◽  
Author(s):  
Carolyn Backer Cave ◽  
Stephen M Kosslyn

An investigation of the role of parts and their spatial relations in object identification is reported. At the most general level, two important results were obtained. First, proper spatial relations among components of an object are critical for easy identification. When parts were scrambled on the page, naming times and error rates increased. And, second, the way an object is divided into parts (parsed) affects identification only under the most impoverished viewing conditions. When subjects had as little as 1 s (and sometimes as little as 200 ms) to view an object, the way objects were divided into parts had no effect on naming times or accuracy. There was no hint of an interaction between type of parse and how parts were arranged on the page. This pattern of effects supports theories that suggest that objects typically are recognized without being parsed into parts. The findings are in agreement with theories suggesting that object features (not specifically related to parts) are matched directly with such features stored in long-term memory, with the constraint that the features of a single object are seen from a single viewpoint.


2020 ◽  
Author(s):  
Zhiyan Wang ◽  
Masako Tamaki ◽  
Kazuhisa Shibata ◽  
Michael S. Worden ◽  
Takashi Yamada ◽  
...  

AbstractWhile numerous studies have shown that visual perceptual learning (VPL) occurs as a result of exposure to a visual feature in a task-irrelevant manner, the underlying neural mechanism is poorly understood. In a previous psychophysical study, subjects were repeatedly exposed to a task-irrelevant global motion display that induced the perception of not only the local motions but also a global motion moving in the direction of the spatiotemporal average of the local motion vectors. As a result, subjects enhanced their sensitivity only to the local moving directions, suggesting that early visual areas (V1/V2) that process local motions are involved in task-irrelevant VPL. However, this hypothesis has never been examined by directly examining the involvement of early visual areas (V1/V2). Here, we employed a decoded neurofeedback technique (DecNef) using functional magnetic resonance imaging. During the DecNef training, subjects were trained to induce the activity patterns in V1/V2 that were similar to those evoked by the actual presentation of the global motion display. The DecNef training was conducted with neither the actual presentation of the display nor the subjects’ awareness of the purpose of the experiment. As a result, subjects increased the sensitivity to the local motion directions but not specifically to the global motion direction. The training effect was strictly confined to V1/V2. Moreover, subjects reported that they neither perceived nor imagined any motion during the DecNef training. These results together suggest that that V1/V2 are sufficient for exposure-based task-irrelevant VPL to occur unconsciously.Significance StatementWhile numerous studies have shown that visual perceptual learning (VPL) occurs as a result of exposure to a visual feature in a task-irrelevant manner, the underlying neural mechanism is poorly understood. Previous psychophysical experiments suggest that early visual areas (V1/V2) are involved in task-irrelevant VPL. However, this hypothesis has never been examined by directly examining the involvement of early visual areas (V1/V2). Here, using decoded fMRI neurofeedback, the activity patterns similar to those evoked by the presentation of a complex motion display were repeatedly induced only in early visual areas. The training sensitized only the local motion directions and not the global motion direction, suggesting that V1/V2 are involved in task-irrelevant VPL.


2021 ◽  
Author(s):  
Jiedong Zhang ◽  
Yong Jiang ◽  
Yunjie Song ◽  
Peng Zhang ◽  
Sheng He

Regions sensitive to specific object categories as well as organized spatial patterns sensitive to different features have been found across the whole ventral temporal cortex (VTC). However, it is unclear that within each object category region, how specific feature representations are organized to support object identification. Would object features, such as object parts, be represented in fine-scale spatial organization within object category-specific regions? Here we used high-field 7T fMRI to examine the spatial organization of neural tuning to different face parts within each face-selective region. Our results show consistent spatial organization across individuals that within right posterior fusiform face area (pFFA) and right occipital face area (OFA), the posterior portion of each region was biased to eyes, while the anterior portion was biased to mouth and chin stimuli. Our results demonstrate that within the occipital and fusiform face processing regions, there exist systematic spatial organizations of neural tuning to different face parts that support further computation combining them.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lyle Muller ◽  
Giovanni Piantoni ◽  
Dominik Koller ◽  
Sydney S Cash ◽  
Eric Halgren ◽  
...  

During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories.


2021 ◽  
Author(s):  
Cameron J Higgins ◽  
Diego Vidaurre ◽  
Nils Kolling ◽  
Yunzhe Liu ◽  
Tim Behrens ◽  
...  

An emerging goal in neuroscience is tracking what information is represented in brain activity over time as a participant completes some task. Whilst EEG and MEG offer millisecond temporal resolution of how activity patterns emerge and evolve, standard decoding methods present significant barriers to interpretability as they obscure the underlying spatial and temporal activity patterns. We instead propose the use of a generative encoding model framework that simultaneously infers the multivariate spatial patterns of activity and the variable timing at which these patterns emerge on individual trials. An encoding model inversion allows predictions to be made about unseen test data in the same way as in standard decoding methodology. These SpatioTemporally Resolved MVPA (STRM) models can be flexibly applied to a wide variety of experimental paradigms, including classification and regression tasks. We show that these models provide insightful maps of the activity driving predictive accuracy metrics; demonstrate behaviourally meaningful variation in the timing of pattern emergence on individual trials; and achieve predictive accuracies that are either equivalent or surpass those achieved by more widely used methods. This provides a new avenue for investigating the brain's representational dynamics and could ultimately support more flexible experimental designs in future.


Sign in / Sign up

Export Citation Format

Share Document