scholarly journals Evaluating and improving heritability models using summary statistics

2019 ◽  
Author(s):  
Doug Speed ◽  
John Holmes ◽  
David J Balding

AbstractThere is currently much debate regarding the best way to model how heritability varies across the genome. The authors of GCTA recommend the GCTA-LDMS-I Model, the authors of LD Score Regression recommend the Baseline LD Model, while we have instead recommended the LDAK Model. Here we provide a statistical framework for assessing heritability models using summary statistics from genome-wide association studies. Using data from studies of 31 complex human traits (average sample size 136,000), we show that the Baseline LD Model is the most realistic of the existing heritability models, but that it can be improved by incorporating features from the LDAK Model. Our framework also provides a method for estimating the selection-related parameter α from summary statistics. We find strong evidence (P<1e-6) of negative genome-wide selection for traits including height, systolic blood pressure and college education, and that the impact of selection is stronger inside functional categories such as coding SNPs and promoter regions.

2021 ◽  
Author(s):  
Jicai Jiang

Using summary statistics from genome-wide association studies (GWAS) has been widely used for fine-mapping complex traits in humans. The statistical framework was largely developed for unrelated samples. Though it is possible to apply the framework to fine-mapping with related individuals, extensive modifications are needed. Unfortunately, this has often been ignored in summary-statistics-based fine-mapping with related individuals. In this paper, we show in theory and simulation what modifications are necessary to extend the use of summary statistics to related individuals. The analysis also demonstrates that though existing summary-statistics-based fine-mapping methods can be adapted for related individuals, they appear to have no computational advantage over individual-data-based methods.


2020 ◽  
Author(s):  
Jiangming Sun ◽  
Yunpeng Wang

ABSTRACTSummaryPost-GWAS studies using the results from large consortium meta-analysis often need to correctly take care of the overlapping sample issue. The gold standard approach for resolving this issue is to reperform the GWAS or meta-analysis excluding the overlapped participants. However, such approach is time-consuming and, sometimes, restricted by the available data. deMeta provides a user friendly and computationally efficient command-line implementation for removing the effect of a contributing sub-study to a consortium from the meta-analysis results. Only the summary statistics of the meta-analysis the sub-study to be removed are required. In addition, deMeta can generate contrasting Manhattan and quantile-quantile plots for users to visualize the impact of the sub-study on the meta-analysis results.Availability and ImplementationThe python source code, examples and documentations of deMeta are publicly available at https://github.com/Computational-NeuroGenetics/[email protected] (J. Sun); [email protected] (Y. Wang)Supplementary informationNone.


2019 ◽  
Author(s):  
Alexey A. Shadrin ◽  
Oleksandr Frei ◽  
Olav B. Smeland ◽  
Francesco Bettella ◽  
Kevin S. O’Connell ◽  
...  

AbstractDetermining the contribution of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here we present Annotation Informed MiXeR: a likelihood-based method to estimate the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. Applying the model to 11 complex phenotypes suggests diverse patterns of functional category-specific genetic architectures across human diseases and traits.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2015 ◽  
Author(s):  
Dominic Holland ◽  
Yunpeng Wang ◽  
Wesley K Thompson ◽  
Andrew Schork ◽  
Chi-Hua Chen ◽  
...  

Genome-wide Association Studies (GWAS) result in millions of summary statistics (``z-scores'') for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric disorders, which are understood to have substantial genetic components that arise from very large numbers of SNPs. The complexity of the datasets, however, poses a significant challenge to maximizing their utility. This is reflected in a need for better understanding the landscape of z-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities that does not require raw genotype data, relying only on summary statistics from GWAS substudies, and a scheme allowing for direct empirical validation. We show that modeling z-scores as a mixture of Gaussians is conceptually appropriate, in particular taking into account ubiquitous non-null effects that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The four-parameter model allows for estimating the degree of polygenicity of the phenotype -- the proportion of SNPs (after uniform pruning, so that large LD blocks are not over-represented) likely to be in strong LD with causal/mechanistically associated SNPs -- and predicting the proportion of chip heritability explainable by genome wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N=82,315) and additionally, for purposes of illustration, putamen volume (N=12,596), with approximately 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We estimate the degree to which effect sizes are over-estimated when based on linear regression association coefficients. We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001, while the respective sample sizes required to approach fully explaining the chip heritability are 106and 105. The model can be extended to incorporate prior knowledge such as pleiotropy and SNP annotation. The current findings suggest that the model is applicable to a broad array of complex phenotypes and will enhance understanding of their genetic architectures.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2015 ◽  
Author(s):  
Hilary Kiyo Finucane ◽  
Brendan Bulik-Sullivan ◽  
Alexander Gusev ◽  
Gosia Trynka ◽  
Yakir Reshef ◽  
...  

Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here, we analyze a broad set of functional elements, including cell-type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits spanning a total of 1.3 million phenotype measurements. To enable this analysis, we introduce a new method for partitioning heritability from GWAS summary statistics while controlling for linked markers. This new method is computationally tractable at very large sample sizes, and leverages genome-wide information. Our results include a large enrichment of heritability in conserved regions across many traits; a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers; and many cell-type-specific enrichments including significant enrichment of central nervous system cell types in body mass index, age at menarche, educational attainment, and smoking behavior. These results demonstrate that GWAS can aid in understanding the biological basis of disease and provide direction for functional follow-up.


Sign in / Sign up

Export Citation Format

Share Document