scholarly journals Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics

2015 ◽  
Author(s):  
Dominic Holland ◽  
Yunpeng Wang ◽  
Wesley K Thompson ◽  
Andrew Schork ◽  
Chi-Hua Chen ◽  
...  

Genome-wide Association Studies (GWAS) result in millions of summary statistics (``z-scores'') for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric disorders, which are understood to have substantial genetic components that arise from very large numbers of SNPs. The complexity of the datasets, however, poses a significant challenge to maximizing their utility. This is reflected in a need for better understanding the landscape of z-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities that does not require raw genotype data, relying only on summary statistics from GWAS substudies, and a scheme allowing for direct empirical validation. We show that modeling z-scores as a mixture of Gaussians is conceptually appropriate, in particular taking into account ubiquitous non-null effects that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The four-parameter model allows for estimating the degree of polygenicity of the phenotype -- the proportion of SNPs (after uniform pruning, so that large LD blocks are not over-represented) likely to be in strong LD with causal/mechanistically associated SNPs -- and predicting the proportion of chip heritability explainable by genome wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N=82,315) and additionally, for purposes of illustration, putamen volume (N=12,596), with approximately 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We estimate the degree to which effect sizes are over-estimated when based on linear regression association coefficients. We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001, while the respective sample sizes required to approach fully explaining the chip heritability are 106and 105. The model can be extended to incorporate prior knowledge such as pleiotropy and SNP annotation. The current findings suggest that the model is applicable to a broad array of complex phenotypes and will enhance understanding of their genetic architectures.

2019 ◽  
Author(s):  
Alexey A. Shadrin ◽  
Oleksandr Frei ◽  
Olav B. Smeland ◽  
Francesco Bettella ◽  
Kevin S. O’Connell ◽  
...  

AbstractDetermining the contribution of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here we present Annotation Informed MiXeR: a likelihood-based method to estimate the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. Applying the model to 11 complex phenotypes suggests diverse patterns of functional category-specific genetic architectures across human diseases and traits.


2015 ◽  
Author(s):  
Guo-Bo Chen ◽  
Sang Hong Lee ◽  
Matthew R Robinson ◽  
Maciej Trzaskowski ◽  
Zhi-Xiang Zhu ◽  
...  

Genome-wide association studies (GWASs) have been successful in discovering replicable SNP-trait associations for many quantitative traits and common diseases in humans. Typically the effect sizes of SNP alleles are very small and this has led to large genome-wide association meta-analyses (GWAMA) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study we propose a new set of metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We proposed a pair of methods in examining the concordance between demographic information and summary statistics. In method I, we use the population genetics Fststatistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. In method II, we conduct principal component analysis based on reported allele frequencies, and is able to recover the ancestral information for each cohort. In addition, we propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. Finally, to quantify unknown sample overlap across all pairs of cohorts we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.


2021 ◽  
Author(s):  
Jicai Jiang

Using summary statistics from genome-wide association studies (GWAS) has been widely used for fine-mapping complex traits in humans. The statistical framework was largely developed for unrelated samples. Though it is possible to apply the framework to fine-mapping with related individuals, extensive modifications are needed. Unfortunately, this has often been ignored in summary-statistics-based fine-mapping with related individuals. In this paper, we show in theory and simulation what modifications are necessary to extend the use of summary statistics to related individuals. The analysis also demonstrates that though existing summary-statistics-based fine-mapping methods can be adapted for related individuals, they appear to have no computational advantage over individual-data-based methods.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ivan Gorlov ◽  
Xiangjun Xiao ◽  
Maureen Mayes ◽  
Olga Gorlova ◽  
Christopher Amos

Abstract Background Over the relatively short history of Genome Wide Association Studies (GWASs), hundreds of GWASs have been published and thousands of disease risk-associated SNPs have been identified. Summary statistics from the conducted GWASs are often available and can be used to identify SNP features associated with the level of GWAS statistical significance. Those features could be used to select SNPs from gray zones (SNPs that are nominally significant but do not reach the genome-wide level of significance) for targeted analyses. Methods We used summary statistics from recently published breast and lung cancer and scleroderma GWASs to explore the association between the level of the GWAS statistical significance and the expression quantitative trait loci (eQTL) status of the SNP. Data from the Genotype-Tissue Expression Project (GTEx) were used to identify eQTL SNPs. Results We found that SNPs reported as eQTLs were more significant in GWAS (higher -log10p) regardless of the tissue specificity of the eQTL. Pan-tissue eQTLs (those reported as eQTLs in multiple tissues) tended to be more significant in the GWAS compared to those reported as eQTL in only one tissue type. eQTL density in the ±5 kb adjacent region of a given SNP was also positively associated with the level of GWAS statistical significance regardless of the eQTL status of the SNP. We found that SNPs located in the regions of high eQTL density were more likely to be located in regulatory elements (transcription factor or miRNA binding sites). When SNPs were stratified by the level of statistical significance, the proportion of eQTLs was positively associated with the mean level of statistical significance in the group. The association curve reaches a plateau around -log10p ≈ 5. The observed associations suggest that quasi-significant SNPs (10− 5 < p < 5 × 10− 8) and SNPs at the genome wide level of statistical significance (p < 5 × 10− 8) may have a similar proportions of risk associated SNPs. Conclusions The results of this study indicate that the SNP’s eQTL status, as well as eQTL density in the adjacent region are positively associated with the level of statistical significance of the SNP in GWAS.


Author(s):  
Nana Matoba ◽  
Michael I. Love ◽  
Jason L. Stein

AbstractHuman brain structure traits have been hypothesized to be broad endophenotypes for neuropsychiatric disorders, implying that brain structure traits are comparatively ‘closer to the underlying biology’. Genome-wide association studies from large sample sizes allow for the comparison of common variant genetic architectures between traits to test the evidence supporting this claim. Endophenotypes, compared to neuropsychiatric disorders, are hypothesized to have less polygenicity, with greater effect size of each susceptible SNP, requiring smaller sample sizes to discover them. Here, we compare polygenicity and discoverability of brain structure traits, neuropsychiatric disorders, and other traits (89 in total) to directly test this hypothesis. We found reduced polygenicity (FDR = 0.01) and increased discoverability of cortical brain structure traits, as compared to neuropsychiatric disorders (FDR = 3.68×10−9). We predict that ~8M samples will be required to explain the full heritability of cortical surface area by genome-wide significant SNPs, whereas sample sizes over 20M will be required to explain the full heritability of major depressive disorder. In conclusion, we find reduced polygenicity and increased discoverability of cortical structure compared to neuropsychiatric disorders, which is consistent with brain structure satisfying the higher power criterion of endophenotypes.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2021 ◽  
pp. 1-11
Author(s):  
Valentina Escott-Price ◽  
Karl Michael Schmidt

<b><i>Background:</i></b> Genome-wide association studies (GWAS) were successful in identifying SNPs showing association with disease, but their individual effect sizes are small and require large sample sizes to achieve statistical significance. Methods of post-GWAS analysis, including gene-based, gene-set and polygenic risk scores, combine the SNP effect sizes in an attempt to boost the power of the analyses. To avoid giving undue weight to SNPs in linkage disequilibrium (LD), the LD needs to be taken into account in these analyses. <b><i>Objectives:</i></b> We review methods that attempt to adjust the effect sizes (β<i>-</i>coefficients) of summary statistics, instead of simple LD pruning. <b><i>Methods:</i></b> We subject LD adjustment approaches to a mathematical analysis, recognising Tikhonov regularisation as a framework for comparison. <b><i>Results:</i></b> Observing the similarity of the processes involved with the more straightforward Tikhonov-regularised ordinary least squares estimate for multivariate regression coefficients, we note that current methods based on a Bayesian model for the effect sizes effectively provide an implicit choice of the regularisation parameter, which is convenient, but at the price of reduced transparency and, especially in smaller LD blocks, a risk of incomplete LD correction. <b><i>Conclusions:</i></b> There is no simple answer to the question which method is best, but where interpretability of the LD adjustment is essential, as in research aiming at identifying the genomic aetiology of disorders, our study suggests that a more direct choice of mild regularisation in the correction of effect sizes may be preferable.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2015 ◽  
Author(s):  
Hilary Kiyo Finucane ◽  
Brendan Bulik-Sullivan ◽  
Alexander Gusev ◽  
Gosia Trynka ◽  
Yakir Reshef ◽  
...  

Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here, we analyze a broad set of functional elements, including cell-type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits spanning a total of 1.3 million phenotype measurements. To enable this analysis, we introduce a new method for partitioning heritability from GWAS summary statistics while controlling for linked markers. This new method is computationally tractable at very large sample sizes, and leverages genome-wide information. Our results include a large enrichment of heritability in conserved regions across many traits; a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers; and many cell-type-specific enrichments including significant enrichment of central nervous system cell types in body mass index, age at menarche, educational attainment, and smoking behavior. These results demonstrate that GWAS can aid in understanding the biological basis of disease and provide direction for functional follow-up.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Yuqi Zhao ◽  
Sander M van der Laan ◽  
Hester M den Ruijter ◽  
Saskia Haitjema ◽  
Gerard Pasterkamp ◽  
...  

Introduction: The composition of atherosclerotic plaques differs between individuals and contributes to the incidence of cardiovascular events. A better understanding of the biology underlying variability in plaque composition will provide insights into the progression of cardiovascular diseases. We carried out genome-wide association studies (GWAS) to investigate the genetic underpinnings of the plaque. Methods: We included carotid endarterectomy patients from the Athero-Express Biobank Study (n = 1,439). We quantified the percentage of macrophages and smooth muscle cells, the number of intraplaque vessels, the amount of collagen and calcification, the atheroma size, and the presence of plaque hemorrhage. GWAS was performed for all 9 plaque traits, and combined with summary level from GWAS consortia data on coronary artery disease (CAD), and ischemic stroke. Next, these data were integrated with data from human expression quantitative trait loci analyses, and pathway analyses of the plaque traits. Results: No individual locus reached genome-wide significance, likely due to the moderate sample size involved. However, it is plausible that perturbations of diverse pathways by a large number of genetic loci with small effects together contribute to the regulation of plaque composition. We identified 42-97 pathways significantly associated with each plaque phenotype, with many specific to each trait, supporting the presence of unique genetic components of individual plaque phenotypes. We also detected 39 pathways associated with at least four plaque phenotypes, among which were CAD-associated processes such as “extracellular matrix”, “complement and coagulation cascades” and stroke-associated pathways such as “Toll-like receptor signaling”. Interestingly, we found that smooth muscle cell percentage and atheroma size shared more genetic loci and pathways with intraplaque hemorrhage (such as “Sphingolipid metabolism”); the latter trait is associated with secondary cardiovascular events. Conclusion: There are genetic correlations among plaque phenotypes as well as between plaque phenotypes that provide mechanistic insight into the composition of the plaque and progression to secondary events.


Sign in / Sign up

Export Citation Format

Share Document