scholarly journals Reactivation of chromosome signalling induces reversal of the meiotic program

2019 ◽  
Author(s):  
Maikel Castellano-Pozo ◽  
Sarai Pacheco ◽  
Georgios Sioutas ◽  
Angel Luis Jaso-Tamame ◽  
Marian H Dore ◽  
...  

AbstractChromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. We show that termination of chromosome movement and DSB formation is reversible and is continuously implemented by the synaptonemal complex (SC), which silences chromosome signals that promote CHK-2 activity. Forced removal of the SC or different meiosis-specific cohesin complexes, which are individually required for SC stability, causes rapid CHK-2-dependent reinstallation of the DSB-formation and chromosome-movement machinery. This nuclear reorganization occurs without transcriptional changes, but requires signalling from HORMA protein HTP-1. Conversely, CHK-2 inactivation causes rapid disassembly of the DSB-formation and chromosome-movement machinery. Thus, nuclear organization is constantly controlled by the level of CHK-2 activity. Our results uncover an unexpected plasticity of the meiotic program and show how chromosome signalling integrates nuclear organization with meiotic progression.

Author(s):  
Eva Janisiw ◽  
Marilina Raices ◽  
Fabiola Balmir ◽  
Luis Paulin Paz ◽  
Antoine Baudrimont ◽  
...  

SummaryPoly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in promoting the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism.


Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. 431-437 ◽  
Author(s):  
Zechen Yan ◽  
Dandan Fan ◽  
Qingjun Meng ◽  
Jinjian Yang ◽  
Wei Zhao ◽  
...  

The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity.Zfp38mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generatedZfp38conditional knockout mice (Zfp38flox/flox,Stra8-Cre, hereafter calledZfp38cKO) and found that spermatogenesis did not progress beyond meiosis prophase I inZfp38cKO mice. Using a chromosomal spread technique, we observed thatZfp38cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted inZfp38cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced inZfp38cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair-associated protein expression during meiotic progression in mouse.


2022 ◽  
Vol 36 (1-2) ◽  
pp. 4-6
Author(s):  
Corinne Grey ◽  
Bernard de Massy

During meiosis, a molecular program induces DNA double-strand breaks (DSBs) and their repair by homologous recombination. DSBs can be repaired with or without crossovers. ZMM proteins promote the repair toward crossover. The sites of DSB repair are also sites where the axes of homologous chromosomes are juxtaposed and stabilized, and where a structure called the synaptonemal complex initiates, providing further regulation of both DSB formation and repair. How crossover formation and synapsis initiation are linked has remained unknown. The study by Pyatnitskaya and colleagues (pp. 53–69) in this issue of Genes & Development highlights the central role of the Saccharomyces cerevisiae ZMM protein Zip4 in this process.


Author(s):  
Yukiko Imai ◽  
Kenji Saito ◽  
Kazumasa Takemoto ◽  
Fabien Velilla ◽  
Toshihiro Kawasaki ◽  
...  

In meiotic prophase I, homologous chromosomes are bound together by the synaptonemal complex, in which two axial elements are connected by transverse filaments and central element proteins. In human and zebrafish spermatocytes, homologous recombination and assembly of the synaptonemal complex initiate predominantly near telomeres. In mice, synapsis is not required for meiotic double-strand breaks (DSBs) and homolog alignment but is required for DSB repair; however, the interplay of these meiotic events in the context of peritelomeric bias remains unclear. In this study, we identified a premature stop mutation in the zebrafish gene encoding the transverse filament protein Sycp1. Insycp1mutant zebrafish spermatocytes, axial elements were formed and paired at chromosome ends between homologs during early to mid-zygonema. However, they did not synapse, and their associations were mostly lost in late zygotene- or pachytene-like stages. Insycp1mutant spermatocytes, γH2AX signals were observed, and Dmc1/Rad51 and RPA signals appeared predominantly near telomeres, resembling wild-type phenotypes. We observed persistent localization of Hormad1 along the axis insycp1mutant spermatocytes, while the majority of Iho1 signals appeared and disappeared with kinetics similar to those in wild-type spermatocytes. Notably, persistent Iho1 foci were observed inspo11mutant spermatocytes, suggesting that Iho1 dissociation from axes occurs in a DSB-dependent manner. Our results demonstrated that Sycp1 is not required for peritelomeric DSB formation but is necessary for complete pairing of homologs in zebrafish meiosis.


2018 ◽  
Author(s):  
Eva Janisiw ◽  
Maria Rosaria Dello Stritto ◽  
Verena Jantsch ◽  
Nicola Silva

AbstractDuring meiosis, the maternal and paternal homologous chromosomes must align along their entire length and recombine to achieve faithful segregation in the gametes. Meiotic recombination is accomplished through the formation of DNA double-strand breaks, a subset of which can mature into crossovers to link the parental homologous chromosomes and promote their segregation. Breast and ovarian cancer susceptibility protein BRCA1 and its heterodimeric partner BARD1 play a pivotal role in DNA repair in mitotic cells; however, their functions in gametogenesis are less well understood. Here we show that localization of BRC-1 and BRD-1 (Caenorhabditis elegans orthologues of BRCA1 and BARD1) is dynamic during meiotic prophase I; they ultimately becoming concentrated at regions surrounding the presumptive crossover sites, co-localizing with the pro-crossover factors COSA-1, MSH-5 and ZHP-3. The synaptonemal complex is essential for BRC-1 loading onto chromosomes but recombination is not. BRC-1 forms an in vivo complex with the synaptonemal complex component SYP-3 and the crossover-promoting factor MSH-5. Furthermore, BRC-1 is essential for efficient stage-specific recruitment of the RAD-51 recombinase to DNA damage sites when synapsis is impaired and upon induction of exogenous DNA double-strand breaks. Taken together, our data provide new insights into the localization and meiotic function of the BRC-1–BRD-1 complex and highlight their essential role in DNA double-strand break repair during gametogenesis.Author summarySexually reproducing species rely on meiosis to transmit their genetic information across generations. Parental chromosomes (homologues) undergo many distinctive processes in their complex journey from attachment to segregation. The physiological induction of DNA double strand breaks is crucial for promoting correct chromosome segregation: they are needed to activate the DNA repair machinery responsible for creating physical connections, or crossovers (COs), between the homologues. In turn, crossovers promote the accurate segregation of the chromosomes in daughter cells. The BRCA1–BARD1 complex has a pivotal role during DNA repair in somatic cells and is exclusively located on unaligned chromosomal regions during mammalian meiosis. We show that in Caenorhabditis elegans, BRCA1 and BARD1 localize to chromosomes at all stages of meiotic prophase I and are enriched at presumptive crossover sites. We found that BRCA1 promotes DNA loading of the repair factor RAD-51 in specific mutant backgrounds and upon exogenous damage induction. Our data provide evidence for a direct physical association between BRCA1 and pro-crossover factors (including the synaptonemal complex) and identify an important role for BRCA1 in stimulating meiotic DNA repair. Further studies are necessary to identify the substrates acted upon by BRCA1–BARD1 complex to maintain genome stability in the gametes.


Author(s):  
Xiaojing Mu ◽  
Hajime Murakami ◽  
Neeman Mohibullah ◽  
Scott Keeney

The number of DNA double-strand breaks (DSBs) initiating meiotic recombination is elevated in Saccharomyces cerevisiae mutants that are globally defective in forming crossovers and synaptonemal complex (SC), a protein scaffold juxtaposing homologous chromosomes. These mutants thus appear to lack a negative feedback loop that inhibits DSB formation when homologs engage one another. This feedback is predicted to be chromosome autonomous, but this has not been tested. Moreover, what chromosomal process is recognized as "homolog engagement" remains unclear. To address these questions, we evaluated effects of homolog engagement defects restricted to small portions of the genome using karyotypically abnormal yeast strains with a homeologous chromosome V pair, monosomic V, or trisomy XV. We found that homolog-engagement-defective chromosomes incurred more DSBs, concomitant with prolonged retention of the DSB-promoting protein Rec114, while the rest of the genome remained unaffected. SC-deficient, crossover-proficient mutants ecm11 and gmc2 experienced increased DSB numbers diagnostic of homolog engagement defects. These findings support the hypothesis that SC formation provokes DSB protein dissociation, leading in turn to loss of a DSB competent state. Our findings show that DSB number is regulated in a chromosome-autonomous fashion and provide insight into how homeostatic DSB controls respond to aneuploidy during meiosis.


PLoS Genetics ◽  
2015 ◽  
Vol 11 (7) ◽  
pp. e1005301 ◽  
Author(s):  
Javier Varas ◽  
Eugenio Sánchez-Morán ◽  
Gregory P. Copenhaver ◽  
Juan L. Santos ◽  
Mónica Pradillo

2020 ◽  
Vol 64 (5) ◽  
pp. 765-777 ◽  
Author(s):  
Yixi Xu ◽  
Dongyi Xu

Abstract Deoxyribonucleic acid (DNA) is at a constant risk of damage from endogenous substances, environmental radiation, and chemical stressors. DNA double-strand breaks (DSBs) pose a significant threat to genomic integrity and cell survival. There are two major pathways for DSB repair: nonhomologous end-joining (NHEJ) and homologous recombination (HR). The extent of DNA end resection, which determines the length of the 3′ single-stranded DNA (ssDNA) overhang, is the primary factor that determines whether repair is carried out via NHEJ or HR. NHEJ, which does not require a 3′ ssDNA tail, occurs throughout the cell cycle. 53BP1 and the cofactors PTIP or RIF1-shieldin protect the broken DNA end, inhibit long-range end resection and thus promote NHEJ. In contrast, HR mainly occurs during the S/G2 phase and requires DNA end processing to create a 3′ tail that can invade a homologous region, ensuring faithful gene repair. BRCA1 and the cofactors CtIP, EXO1, BLM/DNA2, and the MRE11–RAD50–NBS1 (MRN) complex promote DNA end resection and thus HR. DNA resection is influenced by the cell cycle, the chromatin environment, and the complexity of the DNA end break. Herein, we summarize the key factors involved in repair pathway selection for DSBs and discuss recent related publications.


Sign in / Sign up

Export Citation Format

Share Document