scholarly journals Transcription factor ZFP38 is essential for meiosis prophase I in male mice

Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. 431-437 ◽  
Author(s):  
Zechen Yan ◽  
Dandan Fan ◽  
Qingjun Meng ◽  
Jinjian Yang ◽  
Wei Zhao ◽  
...  

The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity.Zfp38mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generatedZfp38conditional knockout mice (Zfp38flox/flox,Stra8-Cre, hereafter calledZfp38cKO) and found that spermatogenesis did not progress beyond meiosis prophase I inZfp38cKO mice. Using a chromosomal spread technique, we observed thatZfp38cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted inZfp38cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced inZfp38cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair-associated protein expression during meiotic progression in mouse.

2007 ◽  
Vol 177 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Naoya Uematsu ◽  
Eric Weterings ◽  
Ken-ichi Yano ◽  
Keiko Morotomi-Yano ◽  
Burkhard Jakob ◽  
...  

The DNA-dependent protein kinase catalytic subunit (DNA-PKCS) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PKCS recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PKCS accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PKCS influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PKCS at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PKCS influence the stability of its binding to DNA ends. We suggest a model in which DNA-PKCS phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PKCS with the DNA ends.


2021 ◽  
Author(s):  
Takaaki Yasuhara ◽  
Reona Kato ◽  
Motohiro Yamauchi ◽  
Yuki Uchihara ◽  
Lee Zou ◽  
...  

AbstractR-loops, consisting of ssDNA and DNA-RNA hybrids, are potentially vulnerable unless they are appropriately processed. Recent evidence suggests that R-loops can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. Yet, how the vulnerability of R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops and chromosome translocations and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end-joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1370
Author(s):  
Atsushi Shibata ◽  
Penny A. Jeggo

Ataxia telangiectasia mutated (ATM) is a central kinase that activates an extensive network of responses to cellular stress via a signaling role. ATM is activated by DNA double strand breaks (DSBs) and by oxidative stress, subsequently phosphorylating a plethora of target proteins. In the last several decades, newly developed molecular biological techniques have uncovered multiple roles of ATM in response to DNA damage—e.g., DSB repair, cell cycle checkpoint arrest, apoptosis, and transcription arrest. Combinational dysfunction of these stress responses impairs the accuracy of repair, consequently leading to dramatic sensitivity to ionizing radiation (IR) in ataxia telangiectasia (A-T) cells. In this review, we summarize the roles of ATM that focus on DSB repair.


2015 ◽  
Vol 112 (24) ◽  
pp. 7507-7512 ◽  
Author(s):  
Ozge Gursoy-Yuzugullu ◽  
Marina K. Ayrapetov ◽  
Brendan D. Price

The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4–Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Magdalena B. Rother ◽  
Stefania Pellegrino ◽  
Rebecca Smith ◽  
Marco Gatti ◽  
Cornelia Meisenberg ◽  
...  

AbstractChromatin structure is dynamically reorganized at multiple levels in response to DNA double-strand breaks (DSBs). Yet, how the different steps of chromatin reorganization are coordinated in space and time to differentially regulate DNA repair pathways is insufficiently understood. Here, we identify the Chromodomain Helicase DNA Binding Protein 7 (CHD7), which is frequently mutated in CHARGE syndrome, as an integral component of the non-homologous end-joining (NHEJ) DSB repair pathway. Upon recruitment via PARP1-triggered chromatin remodeling, CHD7 stimulates further chromatin relaxation around DNA break sites and brings in HDAC1/2 for localized chromatin de-acetylation. This counteracts the CHD7-induced chromatin expansion, thereby ensuring temporally and spatially controlled ‘chromatin breathing’ upon DNA damage, which we demonstrate fosters efficient and accurate DSB repair by controlling Ku and LIG4/XRCC4 activities. Loss of CHD7-HDAC1/2-dependent cNHEJ reinforces 53BP1 assembly at the damaged chromatin and shifts DSB repair to mutagenic NHEJ, revealing a backup function of 53BP1 when cNHEJ fails.


2020 ◽  
Vol 48 (18) ◽  
pp. 10342-10352
Author(s):  
Tshering D Lama-Sherpa ◽  
Victor T G Lin ◽  
Brandon J Metge ◽  
Shannon E Weeks ◽  
Dongquan Chen ◽  
...  

Abstract Ribosomal DNA (rDNA) consists of highly repeated sequences that are prone to incurring damage. Delays or failure of rDNA double-strand break (DSB) repair are deleterious, and can lead to rDNA transcriptional arrest, chromosomal translocations, genomic losses, and cell death. Here, we show that the zinc-finger transcription factor GLI1, a terminal effector of the Hedgehog (Hh) pathway, is required for the repair of rDNA DSBs. We found that GLI1 is activated in triple-negative breast cancer cells in response to ionizing radiation (IR) and localizes to rDNA sequences in response to both global DSBs generated by IR and site-specific DSBs in rDNA. Inhibiting GLI1 interferes with rDNA DSB repair and impacts RNA polymerase I activity and cell viability. Our findings tie Hh signaling to rDNA repair and this heretofore unknown function may be critically important in proliferating cancer cells.


2001 ◽  
Vol 29 (2) ◽  
pp. 196-201 ◽  
Author(s):  
R. D. Johnson ◽  
M. Jasin

In mammalian cells, the repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. Indirect evidence, including that from gene targeting and random integration experiments, had suggested that non-homologous mechanisms were significantly more frequent than homologous ones. However, more recent experiments indicate that homologous recombination is also a prominent DSB repair pathway. These experiments show that mammalian cells use homologous sequences located at multiple positions throughout the genome to repair a DSB. However, template preference appears to be biased, with the sister chromatid being preferred by 2–3 orders of magnitude over a homologous or heterologous chromosome. The outcome of homologous recombination in mammalian cells is predominantly gene conversion that is not associated with crossing-over. The preference for the sister chromatid and the bias against crossing-over seen in mitotic mammalian cells may have developed in order to reduce the potential for genome alterations that could occur when other homologous repair templates are utilized. In attempts to understand further the mechanism of homologous recombination, the proteins that promote this process are beginning to be identified. To date, four mammalian proteins have been demonstrated conclusively to be involved in DSB repair by homologous recombination: Rad54, XRCC2, XRCC3 and BRCAI. This paper summarizes results from a number of recent studies.


2017 ◽  
Vol 372 (1731) ◽  
pp. 20160282 ◽  
Author(s):  
Ignacio Torrecilla ◽  
Judith Oehler ◽  
Kristijan Ramadan

DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and, if not repaired, lead to chromosomal rearrangement, genomic instability and cell death. Cells have evolved a complex network of DNA repair and signalling molecules which promptly detect and repair DSBs, commonly known as the DNA damage response (DDR). The DDR is orchestrated by various post-translational modifications such as phosphorylation, methylation, ubiquitination or SUMOylation. As DSBs are located in complex chromatin structures, the repair of DSBs is engineered at two levels: (i) at sites of broken DNA and (ii) at chromatin structures that surround DNA lesions. Thus, DNA repair and chromatin remodelling machineries must work together to efficiently repair DSBs. Here, we summarize the current knowledge of the ubiquitin-dependent molecular unfoldase/segregase p97 (VCP in vertebrates and Cdc48 in worms and lower eukaryotes) in DSB repair. We identify p97 as an essential factor that regulates DSB repair. p97-dependent extraction of ubiquitinated substrates mediates spatio-temporal protein turnover at and around the sites of DSBs, thus orchestrating chromatin remodelling and DSB repair. As p97 is a druggable target, p97 inhibition in the context of DDR has great potential for cancer therapy, as shown for other DDR components such as PARP, ATR and CHK1. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2488-2488
Author(s):  
Anna Lena Illert ◽  
Cristina Antinozzi ◽  
Hiroyuki Kawaguchi ◽  
Michal Kulinski ◽  
Christine Klitzing ◽  
...  

Abstract Regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome. We previously reported the cloning of NIPA (Nuclear Interaction Partner of ALK) in complex with constitutively active oncogenic fusions of ALK, which contributes to the development of lymphomas and sarcomas. Subsequently we characterized NIPA as a F-Box protein that defines an oscillating ubiquitin E3 ligase targeting nuclear cyclin B1 in interphase thus contributing to the timing of mitotic entry. Using a conditional knockout strategy we inactivated the gene encoding Nipa. Nipa-deficient animals are viable, but show a lower birth rate and a reduced body weight. Furthermore, Nipa-deficient males were sterile due to a block of spermatogenesis during meiotic prophase. Virtually no spermatocytes progress beyond a late-zygotene to early-pachytene stage and reach an aberrant stage, with synaptonemal complex disassembly and incomplete synapsis. Nipa-/- females are sub-fertile with an early and severe meiotic defect during embryogenesis with extensive apoptosis in early prophase (E13.5-E14.5). Here we report, that Nipa-/- meiocytes exhibit persistent cytological markers for DNA double strand break repair proteins (like DMC1, RAD51) in meiotic prophase with more than twice as many DMC1 foci as control animals. Kinetic analysis of the first wave of spermatogenesis showed increased DMC1/RAD51 foci in Nipa-/- cells as soon as early-pachynema cells appear (13-14 days post partum). Moreover, we show that Nipa deficiency does not lead to a defect in meiotic sex chromosome inactivation despite epithelial stage IV apoptosis. Nipa-deficient spermatocytes exhibit numerous abnormalities in staining of chromosome axis associated proteins (like SYCP3 and STAG3) indicating that chromosome axis defects were associated with compromised chromosome axis integrity leading to overt chromosome fragmentation. Further in vitro analyses with bleomycin treated MEFs displayed high pH2AX levels in cells lacking NIPA. Repair of DNA DSB seemed to be abolished in these cells as the pH2AX-level were sustained and still visible after 90 min of timecourse, where wildtype cells already repaired sides of DNA Damage. Consistent with these findings NIPA-deficient spleen cells showed compromised DNA Damage repair measured in a comet assay with a significantly longer olive tail moment in NIPA knockout cells under repair conditions. Taken together, the phenotype of Nipa-knockout mice is a definitive proof of the meiotic significance of NIPA and our results show a new, unsuspected role of NIPA in chromosome stability and the repair of DNA double strand breaks. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 29 (6) ◽  
pp. 655-661 ◽  
Author(s):  
S. P. Jackson

DNA double-strand breaks (DSBs) can be generated by a variety of genotoxic agents, including ionizing radiation and radiomimetic chemicals. They can also occur when DNA replication complexes encounter other forms of DNA damage, and are produced as intermediates during certain site-specific recombination processes. It is crucial that cells recognize DSBs and bring about their efficient repair, because a single unrepaired cellular DSB can induce cell death, and defective DSB repair can lead to mutations or the loss of significant segments of chromosomal material. Eukaryotic cells have evolved a variety of systems to detect DNA DSBs, repair them, and signal their presence to the transcription, cell cycle and apoptotic machineries. In this review, I describe how work on mammalian cells and also on model organisms such as yeasts has revelaed that such systems are highly conserved throughout evolution, and has provided insights into the molecular mechanisms by which DNA DSBs are recognized, signalled and repaired. I also explain how defects in the proteins that function in these pathways are associated with a variety of human pathological states.


Sign in / Sign up

Export Citation Format

Share Document