scholarly journals Shift in worker physiology and gene expression pattern from reproductive to diapause-like with colony age in the bumble bee Bombus impatiens

2019 ◽  
Author(s):  
Erin D. Treanore ◽  
Jacklyn M. Kiner ◽  
Mackenzie E. Kerner ◽  
Etya Amsalem

AbstractInsects maximize their fitness by exhibiting predictable and adaptive seasonal patterns in response to changing environmental conditions. These seasonal patterns are often expressed even when insects are kept in captivity, suggesting they are functionally and evolutionary important.In this study we examined whether workers of the eusocial bumble bee Bombus impatiens maintained a seasonal signature when kept in captivity. We used an integrative approach and compared worker egg-laying, ovarian activation, body size and mass, lipid content in the fat body, cold tolerance and expression of genes related to cold tolerance, metabolism, and stress throughout colony development.We found that bumble bee worker physiology and gene expression patterns shift from reproductive-like to diapause-like as the colony ages. Workers eclosing early in the colony cycle had increased egg-laying and ovarian activation, and reduced cold tolerance, body size, mass, and lipid content in the fat body, in line with a reproductive-like profile, while late-eclosing workers exhibited the opposite characteristics. Furthermore, expression patterns of genes associated with reproduction and diapause differed between early- and late-eclosing workers, partially following the physiological patterns.We suggest that a seasonal signature, innate to individual workers, the queen or the colony is used by workers as a social cue determining the phenology of the colony and discuss possible implications for understanding reproductive division of labor in bumble bee colonies and the evolutionary divergence of female castes in the genus Bombus.

Author(s):  
Priscila Santos ◽  
Jesse Starkey ◽  
David Galbraith ◽  
Etya Amsalem

Worker reproduction in social insects is often regulated by the queen, but can be regulated by the brood and nestmates, who may use different mechanisms to induce the same outcomes in subordinates. Analysis of brain gene expression patterns in bumble bee workers (Bombus impatiens) in response to the presence of the queen, the brood, both or neither, identified 18 differentially expressed genes, 17 of them are regulated by the queen and none are regulated by the brood. Overall, brain gene expression differences in workers were driven by the queen’s presence, despite recent studies showing that brood reduces worker egg laying and provides context to the queen pheromones. The queen affected important regulators of reproduction and brood care across insects, such as neuroparsin and vitellogenin, and a comparison with similar datasets in the honey bee and the clonal raider ant revealed that neuroparsin is differentially expressed in all species. These data emphasize the prominent role of the queen in regulating worker physiology and behavior. Genes that serve as key regulators of workers’ reproduction are likely to play an important role in the evolution of sociality.


Author(s):  
Priscila Santos ◽  
Jesse Starkey ◽  
David Galbraith ◽  
Etya Amsalem

Worker reproduction in social insects is often regulated by the queen, but can be regulated by the brood and nestmates, who may use different mechanisms to induce the same outcomes in subordinates. Analysis of brain gene expression patterns in bumble bee workers (Bombus impatiens) in response to the presence of the queen, the brood, both or neither, identified 18 differentially expressed genes, 17 of them are regulated by the queen and none are regulated by the brood. Overall, brain gene expression differences in workers were driven by the queen’s presence, despite recent studies showing that brood reduces worker egg laying and provides context to the queen pheromones. The queen affected important regulators of reproduction and brood care across insects, such as neuroparsin and vitellogenin, and a comparison with similar datasets in the honeybee and the raider ant revealed that neuroparsin is differentially expressed in all species. These data emphasize the prominent role of the queen in regulating worker physiology and behavior, and the need to consider components other than the queen when examining regulators of worker sterility. Genes that serve as key regulators of workers’ reproduction are likely to play an important role in the evolution of sociality.


Author(s):  
Priscila Santos ◽  
David Galbraith ◽  
Jesse Starkey ◽  
Etya Amsalem

Worker reproduction in social insects is often regulated by the queen’s presence but can be regulated by other colony members, such as the brood and nestmates. Adults and brood may induce the same outcomes in subordinates but may use different mechanisms. Here, we compared gene expression patterns in bumble bee workers (Bombus impatiens) in response to the queen, the brood, both or none. RNA‐seq analysis of workers’ brain identified 27 differentially expressed genes regulated by the queen and the brood. Expression levels of 8 candidate genes were re-tested using qRT-PCR in worker brain and fat body. Our results show that the brood’s effect on gene expression is substantially weaker than the queen, and a greater impact on gene expression was caused by the combined presence of the queen and the brood. All the genes that were explained by the brood presence were also regulated by the queen presence. A significant amount of the variation in gene expression was explained by the queen, that regulated the expression of key regulators of reproduction and brood care across insects, such as neuroparsin and vitellogenin. A comparison of the data with similar datasets in the honeybee and the raider ant revealed that neuroparsin is the only differentially expressed gene shared by all species. These data highlight the need to consider components other than the queen when examining mechanisms regulating worker sterility and provide information on key genes regulating reproduction that are likely to play an important role in the evolution of sociality.


2018 ◽  
Author(s):  
Pengfei Ye ◽  
Min Li ◽  
Wang Liao ◽  
Kai Ge ◽  
Sihua Jin ◽  
...  

AbstractBroodiness, one of the maternal behaviors and instincts for natural breeding in birds, is an interesting topic in reproductive biology. Broodiness in poultry is characterized by persistent nesting, usually associated with cessation of egg laying. The study of avian broodiness is essential for bird conservation breeding and commercial poultry industry. In this study, we examined the hypothalamus transcriptome of Muscovy duck in three reproductive stages, including egg-laying anaphase (LA), brooding prophase (BP) and brooding metaphase (BM). Differences in gene expression during the transition from egg-laying to broodiness were examined, and 155, 379, 292 differently expressed genes (DEGs) were obtained by pairwise comparisons of LA-vs-BP, LA-vs-BM and BP-vs-BM, respectively (fold change≥ 1.5, P < 0.05). Gene Ontology Term (GO) enrichment analysis suggested a possible role of oxidative stress in the hypothalamus might invoke reproductive costs that potentially change genes expression. KEGG analysis revealed glutamatergic synapse, dopaminergic synapse, serotonergic synapse and GABAergic synapse pathway were significantly enriched, and regulator genes were identified. Eight gene expression patterns were illustrated by trend analysis and further clustered into three clusters. Additional six hub genes were identified through combining trend analysis and protein-protein interaction (PPI) analysis. Our results suggested that the cyclical mechanisms of reproductive function conversion include effects of oxidative stress, biosynthesis of neurotransmitters or their receptors, and interactions between glucocorticoids and thyroid hormones and regulatory genes. These candidate genes and biological pathways may be used as targets for artificial manipulation and marker-assisted breeding in the reproductive behavior.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 173-182
Author(s):  
George K Christophides ◽  
Ioannis Livadaras ◽  
Charalambos Savakis ◽  
Katia Komitopoulou

Abstract Genes encoding predominantly male-specific serum polypeptides (MSSPs) in the medfly Ceratitis capitata are members of a multigene family that are structurally similar to the genes encoding odorant binding proteins of insects. To study the transcriptional regulation of the genes MSSP-α2 and MSSP-β2, overlapping fragments of their promoters, containing the 5′ UTRs and 5′ flanking regions, were fused to the lacZ reporter gene and introduced into the medfly genome via Minos-mediated germline transformation. Transgenic flies were functionally assayed for β-galactosidase activity. Despite their extensive sequence similarity, the two gene promoters show distinct expression patterns of the reporter gene, consistent with previously reported evidence for analogous transcriptional activity of the corresponding endogenous genes. The MSSP-α2 promoter drives gene expression specifically in the fat body of the adult males, whereas the MSSP-β2 promoter directs gene expression in the midgut of both sexes. In contrast, similar transformation experiments in Drosophila melanogaster showed that both promoters drive the expression of the reporter gene in the midgut of adult flies of both sexes. Thus, the very same MSSP-α2 promoter fragment directs expression in the adult male fat body in Ceratitis, but in the midgut of both sexes in Drosophila. Our data suggest that through the evolution of the MSSP gene family a limited number of mutations that occurred within certain cis-acting elements, in combination with new medfly-specific trans-acting factors, endowed these recently duplicated genes with distinct sex-, tissue-, and temporal-specific expression patterns.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Juliet M. Wong ◽  
Gretchen E. Hofmann

Abstract Background The red sea urchin Mesocentrotus franciscanus is an ecologically important kelp forest herbivore and an economically valuable wild fishery species. To examine how M. franciscanus responds to its environment on a molecular level, differences in gene expression patterns were observed in embryos raised under combinations of two temperatures (13 °C or 17 °C) and two pCO2 levels (475 μatm or 1050 μatm). These combinations mimic various present-day conditions measured during and between upwelling events in the highly dynamic California Current System with the exception of the 17 °C and 1050 μatm combination, which does not currently occur. However, as ocean warming and acidification continues, warmer temperatures and higher pCO2 conditions are expected to increase in frequency and to occur simultaneously. The transcriptomic responses of the embryos were assessed at two developmental stages (gastrula and prism) in light of previously described plasticity in body size and thermotolerance under these temperature and pCO2 treatments. Results Although transcriptomic patterns primarily varied by developmental stage, there were pronounced differences in gene expression as a result of the treatment conditions. Temperature and pCO2 treatments led to the differential expression of genes related to the cellular stress response, transmembrane transport, metabolic processes, and the regulation of gene expression. At each developmental stage, temperature contributed significantly to the observed variance in gene expression, which was also correlated to the phenotypic attributes of the embryos. On the other hand, the transcriptomic response to pCO2 was relatively muted, particularly at the prism stage. Conclusions M. franciscanus exhibited transcriptomic plasticity under different temperatures, indicating their capacity for a molecular-level response that may facilitate red sea urchins facing ocean warming as climate change continues. In contrast, the lack of a robust transcriptomic response, in combination with observations of decreased body size, under elevated pCO2 levels suggest that this species may be negatively affected by ocean acidification. High present-day pCO2 conditions that occur due to coastal upwelling may already be influencing populations of M. franciscanus.


2020 ◽  
Author(s):  
Jinkun Yang ◽  
Ying Zhang ◽  
Yong Lian ◽  
Yuhui Chen ◽  
Fuzhong Liu

Abstract Background Eggplant (Solanum melongena L.) is a thermophilic vegetable, and its yield and quality are often affected by cold stress. Therefore, identifying the key genes and mechanisms of cold tolerance has become a significant topic in eggplant. qRT-PCR has been widely used to analyse gene expression patterns, and reliable reference genes are necessary for this technique. Methods To select and evaluate suitable reference genes for qRT-PCR, 18 candidate genes selected from transcriptome sequence data were subjected to analysis of their expression stability under natural cold and normal temperature conditions. Four commonly used programs (geNorm, NormFinder, BestKeeper and RefFinder) were used to determine the stabilities of these genes. Results The results showed that D5, D4 and D1 were the three most stable reference genes among the 18 genes. Then, D5, D4 and D1 were compared with commonly used reference genes. The results showed that D5 was still the most stable gene, followed by APRT, D4, and Actin was the least stable gene. Conclusion D5, APRT and D4 were recommended as a reference gene combination for gene expression normalization under cold stress and at normal temperature during fruit development. Our results provide a molecular foundation for further research on the cold tolerance mechanism of eggplant.


2020 ◽  
Vol 29 (4) ◽  
pp. 720-737 ◽  
Author(s):  
Claudinéia P. Costa ◽  
Michelle A. Duennes ◽  
Kaleigh Fisher ◽  
Joshua P. Der ◽  
Kristal M. Watrous ◽  
...  

2020 ◽  
Author(s):  
Juliet M. Wong ◽  
Gretchen E. Hofmann

Abstract Background: The red sea urchin Mesocentrotus franciscanus is an ecologically important kelp forest herbivore and an economically valuable wild fishery species. To examine how M. franciscanus responds to its environment on a molecular level, differences in gene expression patterns were observed in embryos raised under combinations of two temperatures (13 °C or 17 °C) and two pCO2 levels (475 matm or 1050 matm). These combinations mimic various present-day conditions measured during and between upwelling events in the highly dynamic California Current System with the exception of the 17 °C and 1050 matm combination, which does not currently occur. However, as ocean warming and acidification continues, warmer temperatures and higher pCO2 conditions are expected to increase in frequency and to occur simultaneously. The transcriptomic responses of the embryos were assessed at two developmental stages (gastrula and prism) in light of previously described plasticity in body size and thermotolerance under these temperature and pCO2 treatments.Results: Although transcriptomic patterns primarily varied by developmental stage, there were pronounced differences in gene expression as a result of the treatment conditions. Temperature and pCO2 treatments led to the differential expression of genes related to the cellular stress response, transmembrane transport, metabolic processes, and the regulation of gene expression. At each developmental stage, temperature contributed significantly to the observed variance in gene expression, which was also correlated to the phenotypic attributes of the embryos. On the other hand, the transcriptomic response to pCO2 was relatively muted, particularly at the prism stage.Conclusions: M. franciscanus exhibited transcriptomic plasticity under different temperatures, indicating their capacity for a molecular-level response that may facilitate red sea urchins facing ocean warming as climate change continues. In contrast, the lack of a robust transcriptomic response, in combination with observations of decreased body size, under elevated pCO2 levels suggest that this species may be negatively affected by ocean acidification. High present-day pCO2 conditions that occur due to coastal upwelling may already be influencing populations of M. franciscanus.


Sign in / Sign up

Export Citation Format

Share Document