scholarly journals Measuring stepwise binding of a thermally fluctuating particle to a cell membrane without labeling

2019 ◽  
Author(s):  
A. Rohrbach ◽  
T. Meyer ◽  
H. Kress

ABSTRACTThermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here we show that it is possible to detect single binding events of IgG-coated polystyrene beads, which are held in an optical trap nearby the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically and no fluorophore labelling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential step-wise increases in the force constant of the bond between a bead and a cell of typically 20 pN / µm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes including phagocytosis, drug delivery or the effects of small microplastics and particulates on cells.SIGNIFICANCEInteractions of cells with nearby particles, e.g. bacteria, viruses or synthetic material, is a very fundamental and complex process, often deciding about the cellular fate. The investigation of binding processes between particle and cell is typically investigated by fluorescence techniques, where fluorophores often hinder the molecular interaction of specific binding partners. Therefore, label-free detection or imaging techniques are essential, which are hardly available especially for live cell investigations. Molecular binding is based on thermal position and orientation fluctuations of the binding partners to find the best interaction state. Here, we present a label-free measurement technique that allows us to detect multiple stepwise binding events of molecules on an optically trapped particle close to the cell membrane.

Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 80
Author(s):  
Khaled Alsabbagh ◽  
Tim Hornung ◽  
Achim Voigt ◽  
Sahba Sadir ◽  
Taleieh Rajabi ◽  
...  

A microfluidic chip for electrochemical impedance spectroscopy (EIS) is presented as bio-sensor for label-free detection of proteins by using the example of cardiac troponin I. Troponin I is one of the most specific diagnostic serum biomarkers for myocardial infarction. The microfluidic impedance biosensor chip presented here consists of a microscope glass slide serving as base plate, sputtered electrodes, and a polydimethylsiloxane (PDMS) microchannel. Electrode functionalization protocols were developed considering a possible charge transfer through the sensing layer, in addition to analyte-specific binding by corresponding antibodies and reduction of nonspecific protein adsorption to prevent false-positive signals. Reagents tested for self-assembled monolayers (SAMs) on gold electrodes included thiolated hydrocarbons and thiolated oligonucleotides, where SAMs based on the latter showed a better performance. The corresponding antibody was covalently coupled on the SAM using carbodiimide chemistry. Sampling and measurement took only a few minutes. Application of a human serum albumin (HSA) sample, 1000 ng/mL, led to negligible impedance changes, while application of a troponin I sample, 1 ng/mL, led to a significant shift in the Nyquist plot. The results are promising regarding specific detection of clinically relevant concentrations of biomarkers, such as cardiac markers, with the newly developed microfluidic impedance biosensor chip.


The Analyst ◽  
2014 ◽  
Vol 139 (21) ◽  
pp. 5335-5338 ◽  
Author(s):  
Marcela Salazar-Alvarez ◽  
Olga Korostynska ◽  
Alex Mason ◽  
Ahmed Al-Shamma'a ◽  
Jakki C. Cooney ◽  
...  

The specific binding of streptavidin to biotinylated protein A was demonstrated using a label free microwave sensor.


2021 ◽  
Vol 8 ◽  
Author(s):  
Long Li ◽  
Xiaohuan Wang ◽  
Helong Wu ◽  
Yingfeng Shao ◽  
Huaping Wu ◽  
...  

Cell-cell adhesion and the adhesion of cells to extracellular matrix are mediated by the specific binding of receptors on the cell membrane to their cognate ligands on the opposing surface. The adhesion receptors can exhibit affinity for nanoscale lipid clusters that form in the cell membrane. Experimental studies of such adhesion systems often involve a cell adhering either to a solid surface with immobile ligands or a supported lipid bilayer with mobile ligands. A central question in these cell-substrate adhesions is how the mobility of the ligands physically affects their binding to the adhesion receptors and thereby the behavior of the nanoscale lipid clusters associated with the receptors. Using a statistical mechanical model and Monte Carlo simulations for the adhesion of cells to substrates with ligands, we find that, for mobile ligands, binding to adhesion receptors can promote the formation of mesoscale lipid domains, which in turn enhances the receptor-ligand binding. However, in the case of immobile ligands, the receptor-ligand binding and the tendency for the nanoscale lipid clusters to further coalesce depend on the distribution of the ligands on the substrate. Our findings help to explain why different adhesion experiments for identifying the interplay between receptor-ligand binding and heterogeneities in cell membranes led to contradictory results.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1026
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
M. Selim Ünlü

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1872
Author(s):  
Holger Schulze ◽  
Harry Wilson ◽  
Ines Cara ◽  
Steven Carter ◽  
Edward N. Dyson ◽  
...  

Rapid point of care tests for bacterial infection diagnosis are of great importance to reduce the misuse of antibiotics and burden of antimicrobial resistance. Here, we have successfully combined a new class of non-biological binder molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for direct, label-free detection of Gram-positive bacteria making use of the specific coil-to-globule conformation change of the vancomycin-modified highly branched polymers immobilized on the surface of gold screen-printed electrodes upon binding to Gram-positive bacteria. Staphylococcus carnosus was detected after just 20 min incubation of the sample solution with the polymer-functionalized electrodes. The polymer conformation change was quantified with two simple 1 min EIS tests before and after incubation with the sample. Tests revealed a concentration dependent signal change within an OD600 range of Staphylococcus carnosus from 0.002 to 0.1 and a clear discrimination between Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. This exhibits a clear advancement in terms of simplified test complexity compared to existing bacteria detection tests. In addition, the polymer-functionalized electrodes showed good storage and operational stability.


Talanta ◽  
2010 ◽  
Vol 82 (3) ◽  
pp. 997-1002 ◽  
Author(s):  
Mei Hu ◽  
Jing Tian ◽  
Hao-Ting Lu ◽  
Li-Xing Weng ◽  
Lian-Hui Wang

Sign in / Sign up

Export Citation Format

Share Document