scholarly journals Inception Capsule Network for Retinal Blood Vessel Segmentation and Centerline Extraction

2019 ◽  
Author(s):  
C. Kromm ◽  
K. Rohr

ABSTRACTAutomatic segmentation and centerline extraction of retinal blood vessels from fundus image data is crucial for early detection of retinal diseases. We have developed a novel deep learning method for segmentation and centerline extraction of retinal blood vessels which is based on the Capsule network in combination with the Inception architecture. Compared to state-of-the-art deep convolutional neural networks, our method has much fewer parameters due to its shallow architecture and generalizes well without using data augmentation. We performed a quantitative evaluation using the DRIVE dataset for both vessel segmentation and centerline extraction. Our method achieved state-of-the-art performance for vessel segmentation and outperformed existing methods for centerline extraction.

2021 ◽  
Vol 12 (1) ◽  
pp. 403
Author(s):  
Lin Pan ◽  
Zhen Zhang ◽  
Shaohua Zheng ◽  
Liqin Huang

Automatic segmentation and centerline extraction of blood vessels from retinal fundus images is an essential step to measure the state of retinal blood vessels and achieve the goal of auxiliary diagnosis. Combining the information of blood vessel segments and centerline can help improve the continuity of results and performance. However, previous studies have usually treated these two tasks as separate research topics. Therefore, we propose a novel multitask learning network (MSC-Net) for retinal vessel segmentation and centerline extraction. The network uses a multibranch design to combine information between two tasks. Channel and atrous spatial fusion block (CAS-FB) is designed to fuse and correct the features of different branches and different scales. The clDice loss function is also used to constrain the topological continuity of blood vessel segments and centerline. Experimental results on different fundus blood vessel datasets (DRIVE, STARE, and CHASE) show that our method can obtain better segmentation and centerline extraction results at different scales and has better topological continuity than state-of-the-art methods.


2021 ◽  
Author(s):  
Sanjeewani NA ◽  
arun kumar yadav ◽  
Mohd Akbar ◽  
mohit kumar ◽  
Divakar Yadav

<div>Automatic retinal blood vessel segmentation is very crucial to ophthalmology. It plays a vital role in the early detection of several retinal diseases such as Diabetic Retinopathy, hypertension, etc. In recent times, deep learning based methods have attained great success in automatic segmentation of retinal blood vessels from images. In this paper, a U-NET based architecture is proposed to segment the retinal blood vessels from fundus images of the eye. Furthermore, 3 pre-processing algorithms are also proposed to enhance the performance of the system. The proposed architecture has provided significant results. On the basis of experimental evaluation on the publicly available DRIVE data set, it has been observed that the average accuracy (Acc) is .9577, sensitivity (Se) is .7436, specificity (Sp) is .9838 and F1-score is .7931. The proposed system outperforms all recent state of art approaches mentioned in the literature.</div>


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zihe Huang ◽  
Ying Fang ◽  
He Huang ◽  
Xiaomei Xu ◽  
Jiwei Wang ◽  
...  

Retinal blood vessels are the only deep microvessels in the blood circulation system that can be observed directly and noninvasively, providing us with a means of observing vascular pathologies. Cardiovascular and cerebrovascular diseases, such as glaucoma and diabetes, can cause structural changes in the retinal microvascular network. Therefore, the study of effective retinal vessel segmentation methods is of great significance for the early diagnosis of cardiovascular diseases and the vascular network’s quantitative results. This paper proposes an automatic retinal vessel segmentation method based on an improved U-Net network. Firstly, the image patches are rotated to amplify the image data, and then, the RGB fundus image is preprocessed by normalization. Secondly, after the improved U-Net model is constructed with 23 convolutional layers, 4 pooling layers, 4 upsampling layers, 2 dropout layers, and Squeeze and Excitation (SE) block, the extracted image patches are utilized for training the model. Finally, the fundus images are segmented through the trained model to achieve precise extraction of retinal blood vessels. According to experimental results, the accuracy of 0.9701, 0.9683, and 0.9698, sensitivity of 0.8011, 0.6329, and 0.7478, specificity of 0.9849, 0.9967, and 0.9895, F1-Score of 0.8099, 0.8049, and 0.8013, and area under the curve (AUC) of 0.8895, 0.8845, and 0.8686 were achieved on DRIVE, STARE, and HRF databases, respectively, which is better than most classical algorithms.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 811
Author(s):  
Dan Yang ◽  
Guoru Liu ◽  
Mengcheng Ren ◽  
Bin Xu ◽  
Jiao Wang

Computer-aided automatic segmentation of retinal blood vessels plays an important role in the diagnosis of diseases such as diabetes, glaucoma, and macular degeneration. In this paper, we propose a multi-scale feature fusion retinal vessel segmentation model based on U-Net, named MSFFU-Net. The model introduces the inception structure into the multi-scale feature extraction encoder part, and the max-pooling index is applied during the upsampling process in the feature fusion decoder of an improved network. The skip layer connection is used to transfer each set of feature maps generated on the encoder path to the corresponding feature maps on the decoder path. Moreover, a cost-sensitive loss function based on the Dice coefficient and cross-entropy is designed. Four transformations—rotating, mirroring, shifting and cropping—are used as data augmentation strategies, and the CLAHE algorithm is applied to image preprocessing. The proposed framework is tested and trained on DRIVE and STARE, and sensitivity (Sen), specificity (Spe), accuracy (Acc), and area under curve (AUC) are adopted as the evaluation metrics. Detailed comparisons with U-Net model, at last, it verifies the effectiveness and robustness of the proposed model. The Sen of 0.7762 and 0.7721, Spe of 0.9835 and 0.9885, Acc of 0.9694 and 0.9537 and AUC value of 0.9790 and 0.9680 were achieved on DRIVE and STARE databases, respectively. Results are also compared to other state-of-the-art methods, demonstrating that the performance of the proposed method is superior to that of other methods and showing its competitive results.


2021 ◽  
Author(s):  
Sanjeewani NA ◽  
arun kumar yadav ◽  
Mohd Akbar ◽  
mohit kumar ◽  
Divakar Yadav

<div>Automatic retinal blood vessel segmentation is very crucial to ophthalmology. It plays a vital role in the early detection of several retinal diseases such as Diabetic Retinopathy, hypertension, etc. In recent times, deep learning based methods have attained great success in automatic segmentation of retinal blood vessels from images. In this paper, a U-NET based architecture is proposed to segment the retinal blood vessels from fundus images of the eye. Furthermore, 3 pre-processing algorithms are also proposed to enhance the performance of the system. The proposed architecture has provided significant results. On the basis of experimental evaluation on the publicly available DRIVE data set, it has been observed that the average accuracy (Acc) is .9577, sensitivity (Se) is .7436, specificity (Sp) is .9838 and F1-score is .7931. The proposed system outperforms all recent state of art approaches mentioned in the literature.</div>


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


2021 ◽  
Vol 7 ◽  
pp. e495
Author(s):  
Saleh Albahli ◽  
Hafiz Tayyab Rauf ◽  
Abdulelah Algosaibi ◽  
Valentina Emilia Balas

Artificial intelligence (AI) has played a significant role in image analysis and feature extraction, applied to detect and diagnose a wide range of chest-related diseases. Although several researchers have used current state-of-the-art approaches and have produced impressive chest-related clinical outcomes, specific techniques may not contribute many advantages if one type of disease is detected without the rest being identified. Those who tried to identify multiple chest-related diseases were ineffective due to insufficient data and the available data not being balanced. This research provides a significant contribution to the healthcare industry and the research community by proposing a synthetic data augmentation in three deep Convolutional Neural Networks (CNNs) architectures for the detection of 14 chest-related diseases. The employed models are DenseNet121, InceptionResNetV2, and ResNet152V2; after training and validation, an average ROC-AUC score of 0.80 was obtained competitive as compared to the previous models that were trained for multi-class classification to detect anomalies in x-ray images. This research illustrates how the proposed model practices state-of-the-art deep neural networks to classify 14 chest-related diseases with better accuracy.


2018 ◽  
Vol 8 (12) ◽  
pp. 2512 ◽  
Author(s):  
Ghouthi Boukli Hacene ◽  
Vincent Gripon ◽  
Nicolas Farrugia ◽  
Matthieu Arzel ◽  
Michel Jezequel

Deep learning-based methods have reached state of the art performances, relying on a large quantity of available data and computational power. Such methods still remain highly inappropriate when facing a major open machine learning problem, which consists of learning incrementally new classes and examples over time. Combining the outstanding performances of Deep Neural Networks (DNNs) with the flexibility of incremental learning techniques is a promising venue of research. In this contribution, we introduce Transfer Incremental Learning using Data Augmentation (TILDA). TILDA is based on pre-trained DNNs as feature extractors, robust selection of feature vectors in subspaces using a nearest-class-mean based technique, majority votes and data augmentation at both the training and the prediction stages. Experiments on challenging vision datasets demonstrate the ability of the proposed method for low complexity incremental learning, while achieving significantly better accuracy than existing incremental counterparts.


Sign in / Sign up

Export Citation Format

Share Document