scholarly journals A novel microRNA-based strategy to expand the differentiation potency of stem cells

2019 ◽  
Author(s):  
María Salazar-Roa ◽  
Marianna Trakala ◽  
Mónica Álvarez-Fernández ◽  
Fátima Valdés-Mora ◽  
Cuiqing Zhong ◽  
...  

SUMMARYFull differentiation potential along with self-renewal capacity is a major property of pluripotent stem cells (PSCs). However, the differentiation capacity frequently decreases during expansion of PSCs in vitro. We show here that transient exposure to a single microRNA, expressed at early stages during normal development, improves the differentiation capacity of already-established murine and human PSCs. Short exposure to miR-203 in PSCs (miPSCs) results in expanded differentiation potency as well as improved efficiency in stringent assays such as tetraploid complementation and human-mouse interspecies chimerism. Mechanistically, these effects are mediated by direct repression of de novo DNA methyltransferases Dnmt3a and Dnmt3b, leading to transient and reversible erasing of DNA methylation. As a proof of concept, miR-203 improves differentiation and maturation of PSCs into cardiomyocytes in vitro as well as cardiac regeneration in vivo, after cardiac injury. These data support the use of transient exposure to miR-203 as a general and single method to reset the epigenetic memory in PSCs, and improve their use in regenerative medicine.

2019 ◽  
Vol 6 (6) ◽  
pp. 3213-3221
Author(s):  
Hieu Liem Pham ◽  
Phuc Van Pham

Introduction: The senescence of stem cells is the primary reason that causes aging of stem cell-containing tissues. Some hypotheses have suggested that high glucose concentration in diabetic patients is the main factor that causes senescence of cells in those patients. This study aimed to evaluate the effects of high glucose concentrations on the senescence of adipose-derived stem cells (ADSCs). Methods: ADSCs were isolated and expanded from human adipose tissues. They were characterized and confirmed as mesenchymal stem cells (MSCs) by expression of surface markers, their shape, and in vitro differentiation potential. They were then cultured in 3 different media- that contained 17.5 mM, 35 mM, or 55 mM of D-glucose. The senescent status of ADSCs was recorded by the expression of the enzyme beta-galactosidase, cell proliferation, and doubling time. Real-time RT-PCR was used to evaluate the expression of p16, p21, p53 and mTOR. Results: The results showed that high glucose concentrations (35 mM and 55 mM) in the culture medium induced senescence of human ADSCs. The ADSCs could progress to the senescent status quicker than those cultured in the lower glucose-containing medium (17.5 mM). The senescent state was related to the up-regulation of p16 and mTOR genes. Conclusion: These results suggest that high glucose in culture medium can trigger the expression of p16 and mTOR genes which cause early senescence in ADSCs. Therefore, ADSCs should be cultured in low glucose culture medium, or normal glucose concentration, to extend their life in vitro as well as in vivo.  


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Andrew J Smith ◽  
Iolanda Aquila ◽  
Beverley J Henning ◽  
Mariangela Scalise ◽  
Bernardo Nadal-Ginard ◽  
...  

The identification of resident, endogenous cardiac stem cells (eCSCs) has re-shaped our understanding of cardiac cellular physiology, while offering a significant potential therapeutic avenue. The biology of these cells must be better understood to harness their potential benefits. We used an acute dose (s.c.; 5mgkg-1) of isoproterenol (ISO) to induce diffuse cardiac injury, with associated eCSC activation, in rats. As peak eCSC activation was at 24 hours post ISO-injury, c-kitpos eCSCs were isolated, characterised and their potential for growth and regenerative potential was assessed in vitro and in vivo, respectively. Activated eCSCs showed increased cell cycling activity (51+1% in S- or G2/M phases vs. 9+2% of quiescent), Ki67 expression (56+7% vs. 10+1%) and TERT expression (14-fold increase vs. quiescent). When directly harvested in culture, activated eCSCs showed augmented proliferation, clonogenicity and cardiosphere formation compared to quiescent eCSCs. Activated eCSCs showed increases in expression of numerous growth factors, particularly HGF, IGF-1, TGF-β, periostin, PDGF-AA and VEGF-A. Furthermore, significant alterations were found in the miRnome, notably increased miR-146b and -221, and decreased miR-192 and -351. ISO+5FU was administrated to mice to induce a model of chronic dilated cardiomyopathy, which is characterized by the ablation of eCSCs and the absence of cardiomyocyte replenishment. In these mice with chronic heart failure, freshly isolated quiescent eCSCs or activated eCSCs (2d post-ISO) were injected through the tail vein. 28 days after injection, activated but not quiescent eCSCs re-populated the resident CSC pool, promoted robust new cardiomyocyte formation and improved cardiac function when compared to saline-treated mice. Dual-labelling with BrdU and EdU at selected stages after ISO injury determined that activated eCSCs returned to a quiescent level by 10 weeks post-injury. In conclusion, CSCs rapidly switch from a quiescent to an activated state to match the myocardial needs for myocyte replacement after injury and then spontaneously go back to quiescence. Harnessing the molecules regulating this process may open up future novel approaches for effective myocardial regeneration.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Nidia K. Moncada-Saucedo ◽  
Iván A. Marino-Martínez ◽  
Jorge Lara-Arias ◽  
Víktor J. Romero-Díaz ◽  
Alberto Camacho ◽  
...  

Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14-, and CD34-) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O’Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.


2009 ◽  
Vol 185 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Guizhong Liu ◽  
Sapna Vijayakumar ◽  
Luca Grumolato ◽  
Randy Arroyave ◽  
HuiFang Qiao ◽  
...  

Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expression of Wnt1 but not stabilized β-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 95-95 ◽  
Author(s):  
Keisuke Ito ◽  
Paolo Sportoletti ◽  
John G Clohessy ◽  
Grisendi Silvia ◽  
Pier Paolo Pandolfi

Abstract Abstract 95 Myelodysplastic syndrome (MDS) is an incurable stem cell disorder characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Nucleophosmin (NPM) is directly implicated in primitive hematopoiesis, the pathogenesis of hematopoietic malignancies and more recently of MDS. However, little is known regarding the molecular role and function of NPM in MDS pathogenesis and in stem cell biology. Here we present data demonstrating that NPM plays a critical role in the maintenance of hematopoietic stem cells (HSCs) and the transformation of MDS into leukemia. NPM is located on chromosome 5q and is frequently lost in therapy-related and de novo MDS. We have previously shown that Npm1 acts as a haploinsufficient tumor suppressor in the hematopoietic compartment and Npm1+/− mice develop a hematologic syndrome with features of human MDS, including increased susceptibility to leukemogenesis. As HSCs have been demonstrated to be the target of the primary neoplastic event in MDS, a functional analysis of the HSC compartment is essential to understand the molecular mechanisms in MDS pathogenesis. However, the role of NPM in adult hematopoiesis remains largely unknown as Npm1-deficiency leads to embryonic lethality. To investigate NPM function in adult hematopoiesis, we have generated conditional knockout mice of Npm1, using the Cre-loxP system. Analysis of Npm1 conditional mutants crossed with Mx1-Cre transgenic mice reveals that Npm1 plays a crucial role in adult hematopoiesis and ablation of Npm1 in adult HSCs leads to aberrant cycling and followed by apoptosis. Analysis of cell cycle status revealed that HSCs are impaired in their ability to maintain quiescence after Npm1-deletion and are rapidly depleted in vivo as well as in vitro. Competitive reconstitution assay revealed that Npm1 acts cell-autonomously to maintain HSCs. Conditional inactivation of Npm1 leads to an MDS phenotype including a profoundly impaired ability to differentiate into cells of the erythroid lineage, megakaryocyte dyspoiesis and centrosome amplification. Furthermore, Npm1 loss evokes a p53-dependent response and Npm1-deleted HSCs undergo apoptosis in vivo and in vitro. Strikingly, transfer of the Npm1 mutation into a p53-null background rescued the apoptosis of Npm1-ablated HSCs and resulted in accelerated transformation to an aggressive and lethal form of acute myeloid leukemia. Our findings highlight the crucial role of NPM in stem cell biology and identify a new mechanism by which MDS can progress to leukemia. This has important therapeutic implications for de novo MDS as well as therapy-related MDS, which is known to rapidly evolve to leukemia with frequent loss or mutation of TRP53. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 114 (10) ◽  
pp. 735-747 ◽  
Author(s):  
Marilyne Levy ◽  
Lan Huang ◽  
Elisa Rossi ◽  
Adeline Blandinières ◽  
Dominique Israel-Biet ◽  
...  

SummaryPulmonary vasodilators and prostacyclin therapy in particular, have markedly improved the outcome of patients with pulmonary hypertension (PH). Endothelial dysfunction is a key feature of PH, and we previously reported that treprostinil therapy increases number and proliferative potential of endothelial colony forming cells (ECFC) isolated from PH patients’ blood. In the present study, the objective was to determine how treprostinil contributes to the proangiogenic functions of ECFC. We examined the effect of treprostinil on ECFC obtained from cord blood in terms of colony numbers, proliferative and clonogenic properties in vitro, as well as in vivo vasculogenic properties. Surprisingly, treprostinil inhibited viability of cultured ECFC but did not modify their clonogenic properties or the endothelial differentiation potential from cord blood stem cells. Treprostinil treatment significantly increased the vessel-forming ability of ECFC combined with mesenchymal stem cells (MSC) in Matrigel implanted in nude mice. In vitro, ECFC proliferation was stimulated by conditioned media from treprostinil-pretreated MSC, and this effect was inhibited either by the use of VEGF-A blocking antibodies or siRNA VEGF-A in MSC. Silencing VEGF-A gene in MSC also blocked the pro-angiogenic effect of treprostinil in vivo. In conclusion, increased VEGF-A produced by MSC can account for the increased vessel formation observed during treprostinil treatment. The clinical relevance of these data was confirmed by the high level of VEGF-A detected in plasma from patients with paediatric PH who had been treated with treprostinil. Moreover, our results suggest that VEGF-A level in patients could be a surrogate biomarker of treprostinil efficacy.


Oncotarget ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 16456-16462 ◽  
Author(s):  
Jong Soo Kim ◽  
Yean Ju Hong ◽  
Hyun Woo Choi ◽  
Hyuk Song ◽  
Sung June Byun ◽  
...  

2020 ◽  
Author(s):  
Ying Liu ◽  
Dan Lin ◽  
Haiyang Zhang ◽  
Huiya Wang ◽  
Ting Deng ◽  
...  

Abstract BACKGROUNDCancer-associated cachexia (CAC) is defined as a multifactorial syndrome including depletion of adipose tissue and skeletal muscle. Adipose tissue wasting, as a key characteristic of CAC, occurs early and is related with poor survival. However, the influence of exosomes on adipo-differentiation in CAC remained be mysterious.METHODSOil-red staining, western blotting, and real-time polymerase chain reaction (RT-PCR) were used to investigate the adipo-differentiation capacity of A-MSCs from GC patients and healthy donors. Adipo-differentiation capacity of A-MSCs treated with exosomes from GES-1 or GC cell lines was also detected. To further explore the effects of exosomal miR-155 on adipo-differentiation in vitro, we carried out luciferase reporter assay. Finally, to evaluate the function of exosomal miR-155 in vivo, BALB/c mice were subcutaneously transplanted with SGC7901 cells transfected with lentivirus containing a miR-155 overexpressing (miR-155 OE) sequence or miR-155 shRNA (miR-155 KO) or control lentivirus(NC) to observe the change of adipo-differentiation of A-MSCs.RESULTSWe showed that miR-155 was high expressed in adipose mesenchymal stem cells (A-MSCs) isolated from GC patients, which exhibited significantly suppressed adipo-differentiation. Mechanistically, targeting C/EPBβ and suppressing C/EPBα and PPARγ by GC exosomal miR-155 was demonstrated to be involved in impairing the differentiation of A-MSCs into adipocytes. The expression of C/EPBβ C/EPBα and PPARγ were rescued through downregulating miR-155 in GC exosomes. Moreover, overexpression of miR-155 improved cancer cachexia in tumor-implanted mice, charactered by weight loss, tumor progression and low expression of C/EPBβ, C/EPBα, and PPARγ in A-MSCs as well as FABP4 in tumor-related adipose tissue. Decreasing level of miR-155 in implanted tumor blocked the anti-adipogenic effects of GC. CONCLUSIONGC exosomsal miR-155 suppressed adipo-differentiation of A-MSCs via targeting C/EPBβ of A-MSCs plays a crucial role in CAC.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4374-4374
Author(s):  
Roshanak Ghazanfari ◽  
Hongzhe Li ◽  
Dimitra Zacharaki ◽  
Simón Méndez-Ferrer ◽  
Stefan Scheding

Abstract Human bone marrow contains a rare population of non-hematopoietic mesenchymal stromal cells (BM-MSC) with multilineage differentiation capacity, which are essential constituents of the hematopoietic microenvironment. Self-renewal and differentiation are the two key properties of somatic stem cells, however, stem cell properties of human adult BM-MSC have not been demonstrated conclusively yet. We have previously shown that low/negative expression of PDGFRα on linneg/CD45neg/CD271pos cells identified a highly enriched population of primary BM-MSC in adult human bone marrow (Li et al. Blood, 2013, 122:3699). Based on this work, the current study aimed to investigate the in-vitro and in-vivo stem cell properties of this putative stromal stem cell population. The in-vitro clonogenic potential of freshly sorted human linneg/CD45neg/CD271pos/PDGFRlow/neg cells was evaluated by utilizing the CFU-F assay as well as the recently-developed mesensphere assay, which enables MSC amplification while preserving an immature phenotype (Isern et al, Cell Reports 2013, 30: 1714-24). Comparable colony frequencies were obtained with both assays (19.3 ± 2 and 17.5 ± 2.3 CFU-F and spheres per 100 plated cells, respectively, n=6, p=0.19). In order to test whether both assays identified the same population of clonogenic cells, colonies and spheres were replated under both conditions for up to three generations. The results showed comparable capacities of CFU-F and mesenspheres to form secondary and tertiary CFU-F and spheres. In-vitro self-renewal as indicated by increasing numbers of CFU-F and spheres (416.6 ± 431.7-fold and 49.5 ± 65.7-fold, respectively, n=3) was observed up to the third generation and decreased thereafter. The total number of generations was five (CFU-F) and six (spheres). In-vitro differentiation assays with both, CFU-F- and sphere-derived cells (tested until passage three) demonstrated tri-lineage differentiation potential (adipocytes, osteoblasts, chondrocytes). In addition, CFU-Fs and spheres had comparable surface marker profiles (CD73, CD90, CD105, and HLA-ABC positive; CD31, CD34 and HLA-DR negative), except for CD90, which was higher expressed on CFU-Fs. To investigate in-vivo self-renewal and differentiation potential of the putative stromal stem cells, linneg/CD45neg/CD271pos/PDGFRlow/neg -derived CFU-F and spheres were serially transplanted s.c into NSG mice. After 8 weeks, implants were harvested, human cells were FACS-isolated (CD90 and CD105 expression), and re-assayed under CFU-F and sphere conditions. Whereas in-vivo self-renewal of CFU-F could not be shown (111.5 ± 36 –fold decrease in total CFU-F numbers after primary transplantation, n=3), sphere self-renewal was clearly demonstrated by increased numbers of spheres after primary as well as secondary transplantation (1.13 ± 0.05 and 2.06 ± 0.26 –fold, respectively, n=3), which is remarkable given the fact that the number of recovered human cells is underestimated due to the isolation approach. Here, confirming GFP-marking experiments are ongoing. Finally, preliminary data indicate that linneg/CD45neg/CD271pos/PDGFRlow/neg –derived spheres display full in-vivo differentiation capacity in primary and secondary transplantations. Taken together, our data demonstrate - for the first time - that primary human linneg/CD45neg/CD271pos/PDGFRlow/neg cells meet stringent stem cell criteria, i.e. in-vitro and in-vivo self-renewal and differentiation. These findings answer the long-open question of the potential stem cell properties of adult human MSC and will enable to better understand the properties of native BM-MSC and their biological role in the bone marrow. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Bo Jia ◽  
Jun Chen ◽  
Qin Wang ◽  
Xiang Sun ◽  
Jiusong Han ◽  
...  

BackgroundAdipose-derived stem cells (ADSCs) are increasingly used in regenerative medicine because of their potential to differentiate into multiple cell types, including osteogenic lineages. Sirtuin protein 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that plays important roles in cell differentiation. NOTCH signaling has also been reported to involve in osteogenic differentiation. However, the function of SIRT6 in osteogenic differentiation of ADSCs and its relation to the NOTCH signaling pathways are yet to be explored.MethodsThe in vitro study with human ADSCs (hADSCs) and in vivo experiments with nude mice have been performed. Alkaline phosphatase (ALP) assays and ALP staining were used to detect osteogenic activity. Alizarin Red staining was performed to detect calcium deposition induced by osteogenic differentiation of ADSCs. Western blot, RT-qPCR, luciferase reporter assay, and co-immunoprecipitation assay were applied to explore the relationship between of SIRT6, DNA methyltransferases (DNMTs) and NOTCHs.ResultsSIRT6 promoted ALP activity, enhanced mineralization and upregulated expression of osteogenic-related genes of hADSCs in vitro and in vivo. Further mechanistic studies showed that SIRT6 deacetylated DNMT1, leading to its unstability at protein level. The decreased expression of DNMT1 prevented the abnormal DNA methylation of NOTCH1 and NOTCH2, resulting in the upregulation of their transcription. SIRT6 overexpression partially suppressed the abnormal DNA methylation of NOTCH1 and NOTCH2 by antagonizing DNMT1, leading to an increased capacity of ADSCs for their osteogenic differentiation.ConclusionThis study demonstrates that SIRT6 physical interacts with the DNMT1 protein, deacetylating and destabilizing DNMT1 protein, leading to the activation of NOTCH1 and NOTCH2, Which in turn promotes the osteogenic differentiation of ADSCs.


Sign in / Sign up

Export Citation Format

Share Document