scholarly journals DCP2 plays multiple roles during Drosophila development – possible case of moonlighting?

2019 ◽  
Author(s):  
Rohit Kunar ◽  
Jagat K Roy

AbstractmRNA decapping proteins (DCPs) are components of the P-bodies in the cell which are hubs of mRNAs targeted for decay and they provide the cell with a reversible pool of mRNAs in response to cellular demands. The Drosophila genome codes for two decapping proteins, DCP1 and DCP2 out of which DCP2 is the cognate decapping enzyme. The present endeavour explores the endogenous promoter firing, transcript and protein expression of DCP2 in Drosophila wherein, besides a ubiquitous expression across development, we identify active expression paradigm during dorsal closure and a plausible moonlighting expression in the Corazonin neurons of the larval brain. We also demonstrate that the ablation of DCP2 leads to embryonic lethality and defects in vital morphogenetic processes whereas a knockdown of DCP2 in the Corazonin neurons reduces the sensitivity to ethanol in adults, thereby ascribing novel regulatory roles to DCP2. Our findings unravel novel putative roles for DCP2 and identify it as a candidate for studies on the regulated interplay of essential molecules during early development in Drosophila, nay the living world.

Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 729-739
Author(s):  
Meenakshi Kshirsagar ◽  
Roy Parker

Abstract The major pathway of mRNA decay in yeast initiates with deadenylation, followed by mRNA decapping and 5′-3′ exonuclease digestion. An in silico approach was used to identify new proteins involved in the mRNA decay pathway. One such protein, Edc3p, was identified as a conserved protein of unknown function having extensive two-hybrid interactions with several proteins involved in mRNA decapping and 5′-3′ degradation including Dcp1p, Dcp2p, Dhh1p, Lsm1p, and the 5′-3′ exonuclease, Xrn1p. We show that Edc3p can stimulate mRNA decapping of both unstable and stable mRNAs in yeast when the decapping enzyme is compromised by temperature-sensitive alleles of either the DCP1 or the DCP2 genes. In these cases, deletion of EDC3 caused a synergistic mRNA-decapping defect at the permissive temperatures. The edc3Δ had no effect when combined with the lsm1Δ, dhh1Δ, or pat1Δ mutations, which appear to affect an early step in the decapping pathway. This suggests that Edc3p specifically affects the function of the decapping enzyme per se. Consistent with a functional role in decapping, GFP-tagged Edc3p localizes to cytoplasmic foci involved in mRNA decapping referred to as P-bodies. These results identify Edc3p as a new protein involved in the decapping reaction.


2021 ◽  
Author(s):  
Akruti Shah ◽  
Rashna Bhandari

Inositol hexakisphosphate kinase 1 (IP6K1) is a small molecule kinase that catalyzes the conversion of the inositol phosphate IP6 to 5-IP7. We show that IP6K1 acts independent of its catalytic activity to upregulate the formation of processing bodies (P-bodies), which are cytoplasmic ribonucleoprotein granules that store translationally repressed mRNA. IP6K1 does not localize to P-bodies, but instead binds to ribosomes, where it interacts with the mRNA decapping complex - the scaffold protein EDC4, activator proteins DCP1A/B, decapping enzyme DCP2, and RNA helicase DDX6. Along with its partner 4E-T, DDX6 is known to nucleate protein-protein interactions on the 5’ mRNA cap to facilitate P-body formation. IP6K1 binds the translation initiation complex eIF4F on the mRNA cap, augmenting the interaction of DDX6 with 4E-T and the cap binding protein eIF4E. Cells with reduced IP6K1 show downregulated microRNA-mediated translational suppression and increased stability of DCP2-regulated transcripts. Our findings unveil IP6K1 as a novel facilitator of proteome remodelling on the mRNA cap, tipping the balance in favour of translational repression over initiation, thus leading to P-body assembly.


2017 ◽  
Vol 493 (1) ◽  
pp. 382-387 ◽  
Author(s):  
Takeshi Adachi ◽  
Keigo Nagahama ◽  
Susumu Izumi

2008 ◽  
Vol 36 (4) ◽  
pp. 671-676 ◽  
Author(s):  
Nancy Standart ◽  
Nicola Minshall

Selective protein synthesis in oocytes, eggs and early embryos of many organisms drives several critical aspects of early development, including meiotic maturation and entry into mitosis, establishment of embryonic axes and cell fate determination. mRNA-binding proteins which (usually) recognize 3′-UTR (untranslated region) elements in target mRNAs influence the recruitment of the small ribosomal subunit to the 5′ cap. Probably the best studied such protein is CPEB (cytoplasmic polyadenylation element-binding protein), which represses translation in the oocyte in a cap-dependent manner, and activates translation in the meiotically maturing egg, via cytoplasmic polyadenylation. Co-immunoprecipitation and gel-filtration assays revealed that CPEB in Xenopus oocytes is in a very large RNP (ribonucleoprotein) complex and interacts with other RNA-binding proteins including Xp54 RNA helicase, Pat1, RAP55 (RNA-associated protein 55) and FRGY2 (frog germ cell-specific Y-box protein 2), as well as the eIF4E (eukaryotic initiation factor 4E)-binding protein 4E-T (eIF4E-transporter) and an ovary-specific eIF4E1b, which binds the cap weakly. Functional tests which implicate 4E-T and eIF4E1b in translational repression in oocytes led us to propose a model for the specific inhibition of translation of a target mRNA by a weak cap-binding protein. The components of the CPEB RNP complex are common to P-bodies (processing bodies), neuronal granules and germinal granules, suggesting that a highly conserved ‘masking’ complex operates in early development, neurons and somatic cells.


2010 ◽  
Vol 30 (6) ◽  
pp. 1446-1456 ◽  
Author(s):  
Yuriko Harigaya ◽  
Brittnee N. Jones ◽  
Denise Muhlrad ◽  
John D. Gross ◽  
Roy Parker

ABSTRACT Cap hydrolysis is a critical control point in the life of eukaryotic mRNAs and is catalyzed by the evolutionarily conserved Dcp1-Dcp2 complex. In Saccharomyces cerevisiae, decapping is modulated by several factors, including the Lsm family protein Edc3, which directly binds to Dcp2. We show that Edc3 binding to Dcp2 is mediated by a short peptide sequence located C terminal to the catalytic domain of Dcp2. This sequence is required for Edc3 to stimulate decapping activity of Dcp2 in vitro, for Dcp2 to efficiently accumulate in P-bodies, and for efficient degradation of the RPS28B mRNA, whose decay is enhanced by Edc3. In contrast, degradation of YRA1 pre-mRNA, another Edc3-regulated transcript, occurs independently from this region, suggesting that the effect of Edc3 on YRA1 is independent of its interaction with Dcp2. Deletion of the sequence also results in a subtle but significant defect in turnover of the MFA2pG reporter transcript, which is not affected by deletion of EDC3, suggesting that the region affects some other aspect of Dcp2 function in addition to binding Edc3. These results raise a model for Dcp2 recruitment to specific mRNAs where regions outside the catalytic core promote the formation of different complexes involved in mRNA decapping.


2002 ◽  
Vol 99 (20) ◽  
pp. 12663-12668 ◽  
Author(s):  
Z. Wang ◽  
X. Jiao ◽  
A. Carr-Schmid ◽  
M. Kiledjian

Sign in / Sign up

Export Citation Format

Share Document