scholarly journals SparK: A Publication-quality NGS Visualization Tool

2019 ◽  
Author(s):  
Stefan Kurtenbach ◽  
J. William Harbour

AbstractWhile there are sophisticated resources available for displaying NGS data, including the Integrative Genomics Viewer (IGV) and the UCSC genome browser, exporting regions and assembling figures for publication remains challenging. In particular, customizing track appearance and overlaying track replicates is a manual and time-consuming process. Here, we present SparK, a tool which auto-generates publication-ready, high-resolution, true vector graphic figures from any NGS-based tracks, including RNA-seq, ChIP-seq, and ATAC-seq. Novel functions of SparK include averaging of replicates, plotting standard deviation tracks, and highlighting significantly changed areas. SparK is written in Python 3, making it executable on any major OS platform. Using command line prompts to generate figures allows later changes to be made very easy. For instance, if the genomic region of the plot needs to be changed, or tracks need to be added or removed, the figure can easily be re-generated within seconds without the manual process of re-exporting and re-assembling everything. After plotting with SparK, changes to the output SVG vector graphic files are simple to make, including text, lines, and colors. SparK is publicly available on GitHub: https://github.com/harbourlab/SparK.

2019 ◽  
Author(s):  
Katharina J. Hoff

AbstractNovel genomes are today often annotated by small consortia or individuals whose background is not from bioinformatics. This audience requires tools that are easy to use. This need had been addressed by several genome annotation tools and pipelines. Visualizing resulting annotation is a crucial step of quality control. The UCSC Genome Browser is a powerful and popular genome visualization tool. Assembly Hubs allow browsing genomes that are hosted locally via already available UCSC Genome Browser servers. The steps for creating custom Assembly Hubs are well documented and the required tools are publicly available. However, the number of steps for creating a novel Assembly Hub is large. In some cases the format of input files needs to be adapted which is a difficult task for scientists without programming background. Here, we describe the novel command line tool MakeHub that generates Assembly Hubs for the UCSC Genome Browser in a fully automated fashion. The pipeline also allows extending previously created Hubs by additional tracks.MakeHub is freely available for download from https://github.com/Gaius-Augustus/[email protected]


Author(s):  
Gangjun Zhao ◽  
Caixia Luo ◽  
Jianning Luo ◽  
Junxing Li ◽  
Hao Gong ◽  
...  

Abstract Key message A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Abstract Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3β-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.


2017 ◽  
Vol 46 (D1) ◽  
pp. D762-D769 ◽  
Author(s):  
Jonathan Casper ◽  
Ann S Zweig ◽  
Chris Villarreal ◽  
Cath Tyner ◽  
Matthew L Speir ◽  
...  

Abstract The UCSC Genome Browser (https://genome.ucsc.edu) provides a web interface for exploring annotated genome assemblies. The assemblies and annotation tracks are updated on an ongoing basis—12 assemblies and more than 28 tracks were added in the past year. Two recent additions are a display of CRISPR/Cas9 guide sequences and an interactive navigator for gene interactions. Other upgrades from the past year include a command-line version of the Variant Annotation Integrator, support for Human Genome Variation Society variant nomenclature input and output, and a revised highlighting tool that now supports multiple simultaneous regions and colors.


2020 ◽  
Vol 36 (9) ◽  
pp. 2934-2935 ◽  
Author(s):  
Yi Zheng ◽  
Fangqing Zhao

Abstract Summary Circular RNAs (circRNAs) are proved to have unique compositions and splicing events distinct from canonical mRNAs. However, there is no visualization tool designed for the exploration of complex splicing patterns in circRNA transcriptomes. Here, we present CIRI-vis, a Java command-line tool for quantifying and visualizing circRNAs by integrating the alignments and junctions of circular transcripts. CIRI-vis can be applied to visualize the internal structure and isoform abundance of circRNAs and perform circRNA transcriptome comparison across multiple samples. Availability and implementation https://sourceforge.net/projects/ciri/files/CIRI-vis. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 49 (D1) ◽  
pp. D104-D111
Author(s):  
Semyon Kolmykov ◽  
Ivan Yevshin ◽  
Mikhail Kulyashov ◽  
Ruslan Sharipov ◽  
Yury Kondrakhin ◽  
...  

Abstract The Gene Transcription Regulation Database (GTRD; http://gtrd.biouml.org/) contains uniformly annotated and processed NGS data related to gene transcription regulation: ChIP-seq, ChIP-exo, DNase-seq, MNase-seq, ATAC-seq and RNA-seq. With the latest release, the database has reached a new level of data integration. All cell types (cell lines and tissues) presented in the GTRD were arranged into a dictionary and linked with different ontologies (BRENDA, Cell Ontology, Uberon, Cellosaurus and Experimental Factor Ontology) and with related experiments in specialized databases on transcription regulation (FANTOM5, ENCODE and GTEx). The updated version of the GTRD provides an integrated view of transcription regulation through a dedicated web interface with advanced browsing and search capabilities, an integrated genome browser, and table reports by cell types, transcription factors, and genes of interest.


2019 ◽  
Vol 77 (23) ◽  
pp. 4899-4919 ◽  
Author(s):  
Magdalena Losko ◽  
Dobrochna Dolicka ◽  
Natalia Pydyn ◽  
Urszula Jankowska ◽  
Sylwia Kedracka-Krok ◽  
...  

AbstractObesity is considered a serious chronic disease, associated with an increased risk of developing cardiovascular diseases, non-alcoholic fatty liver disease and type 2 diabetes. Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1) is an RNase decreasing stability of transcripts coding for inflammation-related proteins. In addition, MCPIP1 plays an important role in the regulation of adipogenesis in vitro by reducing the expression of key transcription factors, including C/EBPβ. To elucidate the role of MCPIP1 in adipocyte biology, we performed RNA-Seq and proteome analysis in 3T3-L1 adipocytes overexpressing wild-type (WTMCPIP1) and the mutant form of MCPIP1 protein (D141NMCPIP1). Our RNA-Seq analysis followed by confirmatory Q-RT-PCR revealed that elevated MCPIP1 levels in 3T3-L1 adipocytes upregulated transcripts encoding proteins involved in signal transmission and cellular remodeling and downregulated transcripts of factors involved in metabolism. These data are consistent with our proteomic analysis, which showed that MCPIP1 expressing adipocytes exhibit upregulation of proteins involved in cellular organization and movement and decreased levels of proteins involved in lipid and carbohydrate metabolism. Moreover, MCPIP1 adipocytes are characterized by decreased level of insulin receptor, reduced insulin-induced Akt phosphorylation, as well as depleted Glut4 level and impaired glucose uptake. Overexpression of Glut4 in 3T3-L1 cells expressed WTMCPIP1 rescued adipogenesis. Interestingly, we found decreased level of MCPIP1 along with an increase in body mass index in subcutaneous adipose tissue. The presented data show a novel role of MCPIP1 in modulating insulin sensitivity in adipocytes. Overall, our findings demonstrate that MCPIP1 is an important regulator of adipogenesis and adipocyte metabolism.


2017 ◽  
Vol 34 (2) ◽  
pp. 300-302 ◽  
Author(s):  
Christopher J Green ◽  
Matthew R Gazzara ◽  
Yoseph Barash

Abstract Summary Analysis of RNA sequencing (RNA-Seq) data have highlighted the fact that most genes undergo alternative splicing (AS) and that these patterns are tightly regulated. Many of these events are complex, resulting in numerous possible isoforms that quickly become difficult to visualize, interpret and experimentally validate. To address these challenges we developed MAJIQ-SPEL, a web-tool that takes as input local splicing variations (LSVs) quantified from RNA-Seq data and provides users with visualization and quantification of gene isoforms associated with those. Importantly, MAJIQ-SPEL is able to handle both classical (binary) and complex, non-binary, splicing variations. Using a matching primer design algorithm it also suggests to users possible primers for experimental validation by RT-PCR and displays those, along with the matching protein domains affected by the LSV, on UCSC Genome Browser for further downstream analysis. Availability and implementation Program and code will be available athttp://majiq.biociphers.org/majiq-spel. Supplementary information Supplementary data are available atBioinformatics online.


2018 ◽  
Author(s):  
Eric Olivier Audemard ◽  
Patrick Gendron ◽  
Vincent-Philippe Lavallée ◽  
Josée Hébert ◽  
Guy Sauvageau ◽  
...  

AbstractMutations identified in each Acute Myeloid Leukemia (AML) patients are useful for prognosis and to select targeted therapies. Detection of such mutations by the analysis of Next-Generation Sequencing (NGS) data requires a computationally intensive read mapping step and application of several variant calling methods. Targeted mutation identification drastically shifts the usual tradeoff between accuracy and performance by concentrating all computations over a small portion of sequence space. Here, we present km, an efficient approach leveraging k-mer decomposition of reads to identify targeted mutations. Our approach is versatile, as it can detect single-base mutations, several types of insertions and deletions, as well as fusions. We used two independent AML cohorts (The Cancer Genome Atlas and Leucegene), to show that mutation detection bykmis fast, accurate and mainly limited by sequencing depth. Therefore,kmallows to establish fast diagnostics from NGS data, and could be suitable for clinical applications.


2014 ◽  
Author(s):  
Daehwan Kim ◽  
Ben Langmead ◽  
Steven Salzberg

HISAT is a new, highly efficient system for alignment of sequences from RNA sequencing experiments that achieves dramatically faster performance than previous methods. HISAT uses a new indexing scheme, hierarchical indexing, which is based on the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index. Hierarchical indexing employs two types of indexes for alignment: (1) a whole-genome FM index to anchor each alignment, and (2) numerous local FM indexes for very rapid extensions of these alignments. HISAT?s hierarchical index for the human genome contains 48,000 local FM indexes, each representing a genomic region of ~64,000 bp. The algorithm includes several customized alignment strategies specifically designed for mapping RNA-seq reads across multiple exons. In tests on a variety of real and simulated data sets, we show that HISAT is the fastest system currently available, approximately 50 times faster than TopHat2 and 12 times faster than GSNAP, with equal or better accuracy than any other method. Despite its very large number of indexes, HISAT requires only 4.3 Gigabytes of memory to align reads to the human genome. HISAT supports genomes of any size, including those larger than 4 billion bases. HISAT is available as free, open-source software from http://www.ccb.jhu.edu/software/hisat.


2017 ◽  
Author(s):  
Christopher J. Green ◽  
Matthew R. Gazzara ◽  
Yoseph Barash

AbstractAnalysis of RNA sequencing (RNA-Seq) data have highlighted the fact that most genes undergo alternative splicing (AS) and that these patterns are tightly regulated. Many of these events are complex, resulting in numerous possible isoforms that quickly become difficult to visualize, interpret, and experimentally validate. To address these challenges, We developed MAJIQ-SPEL, a web-tool that takes as input local splicing variations (LSVs) quantified from RNA-Seq data and provides users with visualization and quantification of gene isoforms associated with those. Importantly, MAJIQ-SPEL is able to handle both classical (binary) and complex (non-binary) splicing variations. Using a matching primer design algorithm it also suggests users possible primers for experimental validation by RT-PCR and displays those, along with the matching protein domains affected by the LSV, on UCSC Genome Browser for further downstream analysis.Availability: Program and code will be available at http://majiq.biociphers.org/majiq-spel


Sign in / Sign up

Export Citation Format

Share Document