scholarly journals Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury

2019 ◽  
Author(s):  
Matthew Grove ◽  
Hyunkyoung Lee ◽  
Huaqing Zhao ◽  
Young-Jin Son

ABSTRACTPreviously we showed that YAP/TAZ promote not only proliferation but also differentiation of immature Schwann cells (SCs), thereby forming and maintaining the myelin sheath around peripheral axons (Grove et al., 2017). Here we show that YAP/TAZ are required for mature SCs to restore peripheral myelination, but not to proliferate, after nerve injury. We find that YAP/TAZ dramatically disappear from SCs of adult mice concurrent with axon degeneration after nerve injury. They reappear in SCs only if axons regenerate. YAP/TAZ ablation does not impair SC proliferation or transdifferentiation into growth promoting repair SCs. SCs lacking YAP/TAZ, however, fail to upregulate myelin-associated genes and completely fail to remyelinate regenerated axons. We also show that both YAP and TAZ are redundantly required for optimal remyelination. These findings suggest that axons regulate transcriptional activity of YAP/TAZ in adult SCs and that YAP/TAZ are essential for functional regeneration of peripheral nerve.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Matthew Grove ◽  
Hyunkyoung Lee ◽  
Huaqing Zhao ◽  
Young-Jin Son

Previously we showed that YAP/TAZ promote not only proliferation but also differentiation of immature Schwann cells (SCs), thereby forming and maintaining the myelin sheath around peripheral axons (Grove et al., 2017). Here we show that YAP/TAZ are required for mature SCs to restore peripheral myelination, but not to proliferate, after nerve injury. We find that YAP/TAZ dramatically disappear from SCs of adult mice concurrent with axon degeneration after nerve injury. They reappear in SCs only if axons regenerate. YAP/TAZ ablation does not impair SC proliferation or transdifferentiation into growth promoting repair SCs. SCs lacking YAP/TAZ, however, fail to upregulate myelin-associated genes and completely fail to remyelinate regenerated axons. We also show that both YAP and TAZ are redundantly required for optimal remyelination. These findings suggest that axons regulate transcriptional activity of YAP/TAZ in adult SCs and that YAP/TAZ are essential for functional regeneration of peripheral nerve.


2021 ◽  
Author(s):  
Peter Arthur-Farraj ◽  
Michael P. Coleman

AbstractSince Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bo Jia ◽  
Wei Huang ◽  
Yu Wang ◽  
Peng Zhang ◽  
Zhiwei Wang ◽  
...  

While Nogo protein demonstrably inhibits nerve regeneration in the central nervous system (CNS), its effect on Schwann cells in peripheral nerve repair and regeneration following sciatic nerve injury remains unknown. In this research, We assessed the post-injury expression of Nogo-C in an experimental mouse model of sciatic nerve-crush injury. Nogo-C knockout (Nogo-C–/–) mouse was generated to observe the effect of Nogo-C on sciatic nerve regeneration, Schwann cell apoptosis, and myelin disintegration after nerve injury, and the effects of Nogo-C on apoptosis and dedifferentiation of Schwann cells were observed in vitro. We found that the expression of Nogo-C protein at the distal end of the injured sciatic nerve increased in wild type (WT) mice. Compared with the injured WT mice, the proportion of neuronal apoptosis was significantly diminished and the myelin clearance rate was significantly elevated in injured Nogo-C–/– mice; the number of nerve fibers regenerated and the degree of myelination were significantly elevated in Nogo-C–/– mice on Day 14 after injury. In addition, the recovery of motor function was significantly accelerated in the injured Nogo-C–/– mice. The overexpression of Nogo-C in primary Schwann cells using adenovirus-mediated gene transfer promoted Schwann cells apoptosis. Nogo-C significantly reduced the ratio of c-Jun/krox-20 expression, indicating its inhibition of Schwann cell dedifferentiation. Above all, we hold the view that the expression of Nogo-C increases following peripheral nerve injury to promote Schwann cell apoptosis and inhibit Schwann cell dedifferentiation, thereby inhibiting peripheral nerve regeneration.


Author(s):  
Roy O. Weller

The length of axon that each Schwann cell myelinates in a normal peripheral nerve is approximately proportional to the diameter of the axon and the thickness of the myelin sheath produced. When segmental demyelination occurs, individual segments, represented by the length of axon covered by one Schwann cell, lose their myelin sheaths but the axons are preserved. This differs from Wallerian degeneration where myelin destruction occurs along the length of a nerve fibre following death of the axon.In experimental diphtheritic neuropathy, an acute segmental demyelinating disease, lysosomes accumulate within the Schwann cells prior to disruption of the myelin sheath; furthermore, the site of initial myelin breakdown appears to be closely related to the collections of lysosomes. The Schwann cell starts to form a new myelin sheath around the axon probably within a few hours of the destruction of the original myelin sheath, and while the latter is being catabolised within lysosomal vacuoles This stage of remyelination follows a similar course to primary myelination, so that the recovery stage is characterised by normal axons with either no myelin, or surrounded by sheaths that are very thin relative to the diameter of the axon.


2021 ◽  
Author(s):  
Yaxian Wang ◽  
Fuchao Zhang ◽  
Yunsong Zhang ◽  
Qi Shan ◽  
Wei Liu ◽  
...  

Abstract Background Growth factors execute essential biological functions and affect various physiological and pathological processes, including peripheral nerve injury and regeneration. Our previous sequencing analysis found that betacellulin (Btc), an epidermal growth factor protein family member, showed elevated mRNA expressions in the nerve segment after rat peripheral nerve injury, implying the potential involvement of Btc during peripheral nerve repair. Methods Expression of Btc was examined in Schwann cells. The role of Btc in regulating Schwann cells was investigated by transfecting cultured cells with siRNA segment against Btc or exposed cultured cells with Btc recombinant protein, respectively. The biological functions of Schwann cell-secreted Btc on neurons were also determined. Moreover, the in vivo effect of Btc on Schwann cell migration and axon elongation after rat sciatic nerve injury were further evaluated.Results Immunostaining images and ELISA readings showed Btc was present in and secreted by Schwann cells. Transwell migration and wound healing observations showed that siRNA against Btc impeded Schwann cell migration while exogenous Btc advanced Schwann cell migration. Besides the regulating effect on Schwann cell phenotype, Btc secreted by Schwann cells might influence neuron behavior and affect axon length. In vivo evidence showed that Btc enhanced axonal regrowth and nerve regeneration after both rat sciatic nerve crush injury and transection injury. Conclusion Our findings demonstrated Btc-mediated Schwann cell-axon interactions, revealed the essential roles of Btc on Schwann cell migration and axon elongation, and implied the potential application of Btc as a regenerative strategy for treating peripheral nerve injury.


1958 ◽  
Vol s3-99 (47) ◽  
pp. 333-340
Author(s):  
ARTHUR HESS

Sections of the peripheral nerve-trunks of the metathoracic leg of the cockroach (Periplaneta americana) were studied with the electron microscope. Paraffin sections were also prepared and stained. Protargol succeeds in staining the nerve-fibres. Osmium tetroxide, a modified Weigert procedure, and Luxol fast blue stain the myelin sheaths, as does mercuric bromphenol blue, a protein stain. The axoplasm is relatively free of formed elements; it contains mitochondria. The myelin sheath, when present on the largest and also some smaller fibres, consists of about two or three loose over lapping processes of Schwann cells, covered by their plasma membranes, enclosing lipid-like droplets and having a beaded appearance. Between the nerve-fibres in the nerve-trunk is Schwann-cell cytoplasm, which arises from Schwann cells that surround the whole nerve-trunk. The same fold of Schwann-cell membrane may enter into the formation of the myelin sheath around more than one nerve-fibre. Several small non-myelinated fibres, which may be as small as 0.3 µ in diameter or less, may be enclosed in the same fold of Schwann-cell membrane. Outside of the Schwann-cell layer and surrounding the nerve-trunk is a thin layer of connective tissue, which does not send trabeculae into the interior of the nerve. Tracheae and tracheoles accompany the nerve but are not included within the sheaths surrounding a nerve-trunk, even near the termination of the nerve-fibres in muscle. The structure of the cockroach peripheral nerve is compared with that described by previous investigators, with that of other insects, and with invertebrate and vertebrate nerve.


The fine structure and morphological organization of non-myelinated nerve fibres were studied by ultra-thin sectioning and electron microscopy in peripheral nerves, autonomic nerves and dorsal roots. Several non-myelinated fibres share the cytoplasm of a Schwann cell. The Schwann cells of non-myelinated fibres form a syncytium. The fibres are incompletely sur­rounded by Schwann cell cytoplasm and are suspended in the cytoplasm by mesaxons formed by the plasma membranes of the Schwann cell. The various relationships of mesaxon and nerve fibre are described. Non-myelinated fibres which do not share a Schwann cell are seen very frequently in the sciatic nerve of a new-born mouse but become less common as myelination proceeds and are rare in adults. It is therefore suggested that in developing peripheral nerves, the non­ myelinated fibres that are destined to myelinate are not organized into groups within a single Schwann cell, even before their myelin sheath has appeared; they are, at least for the ages examined here, individuals in relation to a surrounding individual Schwann cell. It is also suggested that the non-myelinated fibres that will never acquire a myelin sheath are organized in a developing peripheral nerve in the same manner as in the adult nerve—several fibres sharing a single Schwann cell that is part of a syncytial system of Schwann cells. Thus, in a developing peripheral nerve, it appears that two types of non-myelinated fibres are present—one destined to myelinate and lying alone in its own Schwann cell and the other, destined to remain unmyelinated and sharing, along with other non-myelinated fibres of the same type, a Schwann cell. The significance of these observations is discussed in relation to the development of nerve fibres and possible physiological importance.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Qianqian Chen ◽  
Qianyan Liu ◽  
Yunsong Zhang ◽  
Shiying Li ◽  
Sheng Yi

AbstractLeukemia inhibitory factor (LIF) is a pleiotropic cytokine that stimulates neuronal development and survival. Our previous study has demonstrated that LIF mRNA is dysregulated in the peripheral nerve segments after nerve injury. Here, we show that LIF protein is abundantly expressed in Schwann cells after rat sciatic nerve injury. Functionally, suppressed or elevated LIF increases or decreases the proliferation rate and migration ability of Schwann cells, respectively. Morphological observations demonstrate that in vivo application of siRNA against LIF after peripheral nerve injury promotes Schwann cell migration and proliferation, axon elongation, and myelin formation. Electrophysiological and behavior assessments disclose that knockdown of LIF benefits the function recovery of injured peripheral nerves. Differentially expressed LIF affects the metabolism of Schwann cells and negatively regulates ERFE (Erythroferrone). Collectively, our observations reveal the essential roles for LIF in regulating the proliferation and migration of Schwann cells and the regeneration of injured peripheral nerves, discover ERFE as a downstream effector of LIF, and extend our understanding of the molecular mechanisms underlying peripheral nerve regeneration.


2018 ◽  
Vol 24 (6) ◽  
pp. 627-638 ◽  
Author(s):  
Ki H. Ma ◽  
John Svaren

The journey of Schwann cells from their origin in the neural crest to their ensheathment and myelination of peripheral nerves is a remarkable one. Their apparent static function in enabling saltatory conduction of mature nerve is not only vital for long-term health of peripheral nerve but also belies an innate capacity of terminally differentiated Schwann cells to radically alter their differentiation status in the face of nerve injury. The transition from migrating neural crest cells to nerve ensheathment, and then myelination of large diameter axons has been characterized extensively and several of the transcriptional networks have been identified. However, transcription factors must also modify chromatin structure during Schwann cell maturation and this review will focus on chromatin modification machinery that is involved in promoting the transition to, and maintenance of, myelinating Schwann cells. In addition, Schwann cells are known to play important regenerative roles after peripheral nerve injury, and information on epigenomic reprogramming of the Schwann cell genome has emerged. Characterization of epigenomic requirements for myelin maintenance and Schwann cell responses to injury will be vital in understanding how the various Schwann cell functions can be optimized to maintain and repair peripheral nerve function.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongkui Wang ◽  
Ping Zhang ◽  
Jun Yu ◽  
Fuchao Zhang ◽  
Wenzhao Dai ◽  
...  

AbstractSchwann cells experience de-differentiation, proliferation, migration, re-differentiation and myelination, and participate in the repair and regeneration of injured peripheral nerves. Our previous sequencing analysis suggested that the gene expression level of matrix metalloproteinase 7 (MMP7), a Schwann cell-secreted proteolytic enzyme, was robustly elevated in rat sciatic nerve segments after nerve injury. However, the biological roles of MMP7 are poorly understood. Here, we exposed primary cultured Schwann cells with MMP7 recombinant protein and transfected siRNA against MMP7 into Schwann cells to examine the effect of exogenous and endogenous MMP7. Meanwhile, the effects of MMP7 in nerve regeneration after sciatic nerve crush in vivo were observed. Furthermore, RNA sequencing and bioinformatic analysis of Schwann cells were conducted to show the molecular mechanism behind the phenomenon. In vitro studies showed that MMP7 significantly elevated the migration rate of Schwann cells but did not affect the proliferation rate of Schwann cells. In vivo studies demonstrated that increased level of MMP7 contributed to Schwann cell migration and myelin sheaths formation after peripheral nerve injury. MMP7-mediated genetic changes were revealed by sequencing and bioinformatic analysis. Taken together, our current study demonstrated the promoting effect of MMP7 on Schwann cell migration and peripheral nerve regeneration, benefited the understanding of cellular and molecular mechanisms underlying peripheral nerve injury, and thus might facilitate the treatment of peripheral nerve regeneration in clinic.


Sign in / Sign up

Export Citation Format

Share Document