scholarly journals Transcranial Direct current stimulation does not modulate performance on a tongue twister task

2019 ◽  
Author(s):  
Charlotte E. E. Wiltshire ◽  
Kate E. Watkins

AbstractBackgroundTDCS modulates cortical excitability in a polarity-specific way. When used in combination with a behavioural task, it can also alter performance. Previously, tDCS modulated the performance of older adults on a complex speech motor learning task, which involved repetition of tongue twisters [1].ObjectiveWe aimed to replicate this finding in healthy young participants and to extend it by measuring tDCS-induced changes in motor excitability using transcranial magnetic stimulation and motor-evoked potentials elicited in the lips.MethodIn a double-blind randomized sham-controlled study, three groups of 20 participants received: 1) anodal tDCS to the left IFG/LipM1 and cathodal tDCS to the right hemisphere homologue; or 2) cathodal tDCS over the left and anodal over the right; or 3) sham stimulation. Participants heard and repeated tongue twisters and matched simple sentences before, during and 10 minutes after the stimulation. Motor excitability was measured before and immediately after the tDCS.ResultsThe improvement in performance of tongue twister repetition from baseline to after stimulation was significantly greater than for the simple sentences but did not differ among the three groups. Motor excitability significantly decreased to a small but similar extent across the three groups.ConclusionsTDCS did not modulate performance on a complex articulation task in healthy young adults. TDCS applied concurrently with task learning also failed to modulate motor excitability in expected ways. TDCS may be most effective in brains where brain function is sub-optimal due to age-related declines or pathology.

2002 ◽  
Vol 13 (01) ◽  
pp. 001-013 ◽  
Author(s):  
James Jerger ◽  
Rebecca Estes

We studied auditory evoked responses to the apparent movement of a burst of noise in the horizontal plane. Event-related potentials (ERPs) were measured in three groups of participants: children in the age range from 9 to 12 years, young adults in the age range from 18 to 34 years, and seniors in the age range from 65 to 80 years. The topographic distribution of grand-averaged ERP activity was substantially greater over the right hemisphere in children and seniors but slightly greater over the left hemisphere in young adults. This finding may be related to age-related differences in the extent to which judgments of sound movement are based on displacement versus velocity information.


2020 ◽  
pp. 14-18
Author(s):  
Татьяна Александровна Цехмистренко ◽  
Аслан Батразович Мазлоев ◽  
Дмитрий Константинович Обухов

Цель - изучение возрастных изменений толщины коры и ее слоев в парамедианной дольке мозжечка у детей. Материал и методы. Работа выполнена на постмортальном материале (62 мозжечка), полученном от детей в возрасте от рождения до 12 лет, умерших в результате травм без повреждений головного мозга. С помощью компьютерной морфометрии на окрашенных методом Ниссля фронтальных гистологических срезах коры, взятой билатерально в области парамедианной (тонкой) дольки (HVIIB) на вершине листков мозжечка, измеряли толщину коры, а также толщину ее молекулярного и зернистого слоев. Анализ количественных данных проводили в годовых интервалах. Результаты. В парамедианной дольке мозжечка увеличение толщины коры происходит в четыре этапа: в правом полушарии - от рождения к 1, 3, 5 и 9 годам, в левом полушарии - к 1, 5, 7 и 9 годам. Левосторонняя асимметрия толщины коры мозжечка отмечается у детей 1 и 2 лет, толщины молекулярного слоя - у детей 3 лет жизни. Правосторонняя асимметрия характерна для толщины зернистого слоя у детей 3 лет и поперечника коры, в целом, у детей 6 лет. Толщина коры и слоев в области парамедианной дольки мозжечка по среднегрупповым показателям достигает уровня взрослых людей к 9 годам. Выводы. Толщина коры мозжечка и ее слоев в области дольки H VII B увеличивается гетерохронно и гетеродинамически в правом и левом полушариях мозжечка у детей на первом году жизни, а также в периоды раннего, первого и второго детства. Уменьшения поперечника коры и слоев в парамедианной дольке мозжечка у детей от рождения до 12 лет не обнаружено. Objective - to study the age-related changes in the thickness of the cortex and its layers in the paramedian lobule of the cerebellum in children. Material and methods. The work was performed on postmortem material (62 cerebellums) obtained from children aged from birth to 12 years who died from injuries but without brain damage. The thickness of the cortex, as well as the thickness of its molecular and granular layers, were measured using computer morphometry on the Nissl-stained frontal histological sections of the cortex taken bilaterally in the region of the paramedian (gracile) lobule (HVIIB) at the top of the folia of cerebellum. Analysis of quantitative data was performed at annual intervals. Results. In the paramedian lobule of the cerebellum, the increase in the thickness of the cortex occured in four stages: in the right hemisphere - from birth to 1, 3, 5 and 9 years, in the left hemisphere - to 1, 5, 7 and 9 years. Left-sided asymmetry of the cortical thickness of the cerebellum was observed in 1 and 2-year old children, the thickness of the molecular layer - in 3-year old children. Right-sided asymmetry was characteristic for the thickness of the granular layer in 3-year old children and a cross-section of the cortex in 6-year old children. The thickness of the cortex and layers in the area of the paramedian lobule of the cerebellum on the average group indicators reached the level of adults by 9 years. Conclusions. The thickness of the cerebellar cortex and its layers in the area of the lobule HVIIB increased heterochronically and heterogeneously in the right and left hemispheres of the cerebellum in children of the first year of life, and in the periods of early, first and second childhood. No reduction in the diameter of the cortex and layers in the paramedian lobule of the cerebellum of children from birth to 12 years was found.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Selene Schintu ◽  
Elisa Martín-Arévalo ◽  
Michael Vesia ◽  
Yves Rossetti ◽  
Romeo Salemme ◽  
...  

Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA’s effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPAper se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1.


2018 ◽  
Vol 24 (10) ◽  
pp. 1121-1124 ◽  
Author(s):  
Aleksandra Mańkowska ◽  
Kenneth M. Heilman ◽  
John B. Williamson ◽  
Michał Harciarek

AbstractObjectives: Healthy individuals often have a leftward and upward attentional spatial bias; however, there is a reduction of this leftward bias with aging. The right hemisphere mediates leftward spatial attention and age-related reduction of right hemispheric activity may account for this reduced leftward bias. The right hemisphere also appears to be responsible for upward bias, and this upward bias might reduce with aging. Alternatively, whereas the dorsal visual stream allocates attention downward, the ventral stream allocates attention upward. Since with aging there is a greater atrophy of the dorsal than ventral stream, older participants may reveal a greater upward bias. The main purpose of this study was to learn if aging influences the vertical allocation of spatial attention. Methods: Twenty-six young (17 males; mean age 44.62±2.57 years) and 25 healthy elderly (13 males; mean age 72.04±.98 years), right-handed adults performed line bisections using 24 vertical lines (24 cm long and 2 mm thick) aligned with their midsagittal plane. Results: Older adults had a significantly greater upward bias than did younger adults. Conclusions: Normal upward attentional bias increases with aging, possibly due to an age-related reduction of the dorsal attentional stream that is responsible for the allocation of downward attention. (JINS, 2018, 24, 1121–1124)


2019 ◽  
Vol 7 (4) ◽  
pp. 88-93
Author(s):  
T. A. Tsekhmistrenko ◽  
S. V. Klochkova ◽  
A. B. Mazloev ◽  
D. B. Nikityuk ◽  
D. K. Obukhov

Objective– the study of age-related changes in the thickness of the cortex and its layers in the posterior lobe of the cerebellum of children.Material and methods.The work is performed on postmortem material (62 cerebellum), obtained from children aged from birth to 12 years who died as a result of injuries without brain damage. Using computer morphometry on the painted method Nissle frontal histological sections of cortex, taken in region right and left posterior quadrangular lobules (H VI) on top of the folia of cerebellum, was measured the cortical thickness and the thickness of molecular and granular layers. Analysis of quantitative data was performed at annual intervals.Results. The posterior lobe of the cerebellum the increase in the thickness of the cortex in the left hemisphere occurs in two stages: from birth to 1 year and then to 2 years, in the right hemisphere in three stages: from birth to 1 year, and 2 and 7 years. Right-sided asymmetry of the thickness of the cerebellar cortex observed in infants and children 7 years of age, thickness of granular layer in infants and children 9 years. Left-hand asymmetry is specific to cortical thickness and its molecular layer in children 12 months.Conclusion. The thickness of the cerebellar cortex and its layers in the area of the lobule H VI increases during early childhood, and in the right hemisphere also during the first childhood. Reducing the diameter of the cortex and layer in the posterior lobe of the cerebellum of children from birth to 12 years of age are not detected.


1999 ◽  
Vol 99 (1-4) ◽  
pp. 59-67 ◽  
Author(s):  
Ugo Nocentini ◽  
Pierre Goulet ◽  
Manon Drolet ◽  
Yves Joanette

2008 ◽  
Vol 20 (2) ◽  
pp. 268-284 ◽  
Author(s):  
Cibu Thomas ◽  
Linda Moya ◽  
Galia Avidan ◽  
Kate Humphreys ◽  
Kwan Jin Jung ◽  
...  

An age-related decline in face processing, even under conditions in which learning and memory are not implicated, has been well documented, but the mechanism underlying this perceptual alteration remains unknown. Here, we examine whether this behavioral change may be accounted for by a reduction in white matter connectivity with age. To this end, we acquired diffusion tensor imaging data from 28 individuals aged 18 to 86 years and quantified the number of fibers, voxels, and fractional anisotropy of the two major tracts that pass through the fusiform gyrus, the pre-eminent face processing region in the ventral temporal cortex. We also measured the ability of a subset of these individuals to make fine-grained discriminations between pairs of faces and between pairs of cars. There was a significant reduction in the structural integrity of the inferior fronto-occipital fasciculus (IFOF) in the right hemisphere as a function of age on all dependent measures and there were also some changes in the left hemisphere, albeit to a lesser extent. There was also a clear age-related decrement in accuracy of perceptual discrimination, especially for more challenging perceptual discriminations, and this held to a greater degree for faces than for cars. Of greatest relevance, there was a robust association between the reduction of IFOF integrity in the right hemisphere and the decline in face perception, suggesting that the alteration in structural connectivity between the right ventral temporal and frontal cortices may account for the age-related difficulties in face processing.


Author(s):  
Janet Brenya ◽  
Katherine Chavarria ◽  
Elizabeth Murray ◽  
Karen Kelly ◽  
Anjel Friest ◽  
...  

Only by understanding the ability to take third-person perspective can we begin to elucidate the neural processes responsible for one’s inimitable conscious experience. The current study examined differences in hemispheric laterality during a first-person perspective (1PP) and third-person perspective (3PP) taking task, when using Transcranial Magnetic Stimulation (TMS). Participants were asked to take either the 1PP or 3PP when identifying the number of spheres in a virtual scene. During this task, single-pulse TMS was delivered to the motor cortex of both the left and right hemispheres of 10 healthy volunteers. Measures of TMS-induced motor-evoked potentials (MEPs) of the contralateral abductor pollicis brevis (APB) were employed as an indicator of lateralized cortical activation. The data suggest that the right hemisphere is more important in discriminating between 1PP and 3PP. These data add a novel method for determining perspective taking and add to the literature supporting the role of the right hemisphere in meta representation.


2019 ◽  
Vol 25 (10) ◽  
pp. 1044-1050
Author(s):  
John B. Williamson ◽  
Aidan Murphy ◽  
Damon G. Lamb ◽  
Zared Schwartz ◽  
Dana Szeles ◽  
...  

AbstractObjectives:Healthy young adults often demonstrate a leftward spatial bias called “pseudoneglect” which often diminishes with aging. One hypothesis for this phenomenon is an age-related deterioration in right hemisphere functions (right hemi-aging). If true, then a greater rightward bias should be evident on all spatial attention tasks regardless of content. Another hypothesis is a decrease in asymmetrical hemispheric activation with age (HAROLD). If true, older participants may show reduced bias in all spatial tasks, regardless of leftward or rightward biasing of specific spatial content.Methods:Seventy right-handed healthy participants, 33 younger (21–40) and 37 older (60–78), were asked to bisect solid and character-letter lines as well as to perform left and right trisections of solid lines.Results:Both groups deviated toward the left on solid line bisections and left trisections. Both groups deviated toward the right on right trisections and character line bisections. In all tasks, the older participants were more accurate than the younger participants.Conclusions:The finding that older participants were more accurate than younger participants across all bisection and trisection conditions suggests a decrease in the asymmetrical hemispheric activation of these specialized networks important in the allocation of contralateral spatial attention or spatial action intention.


Sign in / Sign up

Export Citation Format

Share Document