motor excitability
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 2)

Neurosurgery ◽  
2021 ◽  
Vol 89 (Supplement_2) ◽  
pp. S72-S72
Author(s):  
José Pedro Lavrador ◽  
Ifigeneia Gioti ◽  
Szymon Hoppe ◽  
Josephine Jung ◽  
Sabina Patel ◽  
...  

2021 ◽  
Author(s):  
Esra Al ◽  
Tilman Stephani ◽  
Melina Engelhardt ◽  
Arno Villringer ◽  
Vadim Nikulin

Abstract Human cognition and action can be influenced by internal bodily processes such as heartbeats. For instance, somatosensory perception is impaired both during the systolic phase of the cardiac cycle and when heartbeats evoke stronger cortical responses. Here, we test whether these cardiac effects originate from overall changes in cortical excitability. Cortical and corticospinal excitability were assessed using electroencephalographic and electromyographic responses to transcranial magnetic stimulation while concurrently monitoring cardiac activity with electrocardiography. Cortical and corticospinal excitability were found to be highest during systole and following stronger cortical responses to heartbeats. Furthermore, in a motor task, hand-muscle activity and the associated desynchronization of sensorimotor oscillations were stronger during systole. These results suggest that systolic cardiac signals have a facilitatory effect on motor excitability – in contrast to sensory attenuation that was previously reported for somatosensory perception. Thus, distinct time windows may exist across the cardiac cycle that either optimize perception or action.


2021 ◽  
Author(s):  
Enrica Laura Santarcangelo ◽  
Diego Manzoni

AbstractHypnotisability is a multidimensional trait predicting the proneness to enter hypnosis and/or accept suggestions and is associated with several psychophysiological correlates. This scoping review reports the differences between individuals with high (highs) and low hypnotizability (lows) in the left cerebellar lobules IV–VI grey matter volume, in the excitability of the right motor cortex and in motor and non-motor functions in which the cerebellum may be involved. A reduced cerebellar inhibition may explain the greater excitability of the highs’ right motor cortex. The latter may be involved in their greater proneness to ideomotor behaviour following sensorimotor suggestions. The associated experience of involuntariness and effortlessness could be due to the motor cortex greater excitability as well as to activation of a specific cerebellar-parietal circuit. Looser postural and visuomotor control with no learning across trials and greater attentional stability can be accounted for by a less accurate cerebellar predictive model of information processing. The highs’ stronger functional equivalence between imagery and perception/action and greater motor excitability may be involved in the highs’ greater proneness to respond to emotional stimuli. Paradoxical pain control may depend on reduced cortical inhibition of the pain matrix by the cerebellum. Cerebellar hypotheses are not alternative to other physiological mechanisms and should be tested in future research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wanja Brüchle ◽  
Caroline Schwarzer ◽  
Christina Berns ◽  
Sebastian Scho ◽  
Jessica Schneefeld ◽  
...  

Major depressive disorder (MDD) is the most common mental disorder and deficits in neuroplasticity are discussed as one pathophysiological mechanism. Physical activity (PA) enhances neuroplasticity in healthy subjects and improves clinical symptoms of MDD. However, it is unclear whether this clinical effect of PA is due to restoring deficient neuroplasticity in MDD. We investigated the effect of a 3-week PA program applied on clinical symptoms, motor excitability and plasticity, and on cognition in patients with MDD (N = 23), in comparison to a control intervention (CI; N = 18). Before and after the interventions, the clinical symptom severity was tested using self- (BDI-II) and investigator- (HAMD-17) rated scales, transcranial magnetic stimulation (TMS) protocols were used to test motor excitability and paired-associative stimulation (PAS) to test long-term-potentiation (LTP)-like plasticity. Additionally, cognitive functions such as attention, working memory and executive functions were tested. After the interventions, the BDI-II and HAMD-17 decreased significantly in both groups, but the decrease in HAMD-17 was significantly stronger in the PA group. Cognition did not change notably in either group. Motor excitability did not differ between the groups and remained unchanged by either intervention. Baseline levels of LTP-like plasticity in the motor cortex were low in both groups (PA: 113.40 ± 2.55%; CI: 116.83 ± 3.70%) and increased significantly after PA (155.06 ± 10.48%) but not after CI (122.01 ± 4.1%). Higher baseline BDI-II scores were correlated with lower levels of neuroplasticity. Importantly, the more the BDI-II score decreased during the interventions, the stronger did neuroplasticity increase. The latter effect was particularly strong after PA (r = −0.835; p < 0.001). The level of neuroplasticity related specifically to the psychological/affective items, which are tested predominantly in the BDI-II. However, the significant clinical difference in the intervention effects was shown in the HAMD-17 which focuses more on somatic/neurovegetative items known to improve earlier in the course of MDD. In summary, PA improved symptoms of MDD and restored the deficient neuroplasticity. Importantly, both changes were strongly related on the individual patients' level, highlighting the key role of neuroplasticity in the pathophysiology and the clinical relevance of neuroplasticity-enhancing interventions for the treatment of MDD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Christopher J. Gaffney ◽  
Amber Drinkwater ◽  
Shalmali D. Joshi ◽  
Brandon O'Hanlon ◽  
Abbie Robinson ◽  
...  

Short-term limb immobilization results in skeletal muscle decline, but the underlying mechanisms are incompletely understood. This study aimed to determine the neurophysiologic basis of immobilization-induced skeletal muscle decline, and whether repetitive Transcranial Magnetic Stimulation (rTMS) could prevent any decline. Twenty-four healthy young males (20 ± 0.5 years) underwent unilateral limb immobilization for 72 h. Subjects were randomized between daily rTMS (n = 12) using six 20 Hz pulse trains of 1.5 s duration with a 60 s inter-train-interval delivered at 90% resting Motor Threshold (rMT), or Sham rTMS (n = 12) throughout immobilization. Maximal grip strength, EMG activity, arm volume, and composition were determined at 0 and 72 h. Motor Evoked Potentials (MEPs) were determined daily throughout immobilization to index motor excitability. Immobilization induced a significant reduction in motor excitability across time (−30% at 72 h; p < 0.05). The rTMS intervention increased motor excitability at 0 h (+13%, p < 0.05). Despite daily rTMS treatment, there was still a significant reduction in motor excitability (−33% at 72 h, p < 0.05), loss in EMG activity (−23.5% at 72 h; p < 0.05), and a loss of maximal grip strength (−22%, p < 0.001) after immobilization. Interestingly, the increase in biceps (Sham vs. rTMS) (+0.8 vs. +0.1 mm, p < 0.01) and posterior forearm (+0.3 vs. +0.0 mm, p < 0.05) skinfold thickness with immobilization in Sham treatment was not observed following rTMS treatment. Reduced MEPs drive the loss of strength with immobilization. Repetitive Transcranial Magnetic Stimulation cannot prevent this loss of strength but further investigation and optimization of neuroplasticity protocols may have therapeutic benefit.


2021 ◽  
Author(s):  
Daniele Romano ◽  
Alessandro Mioli ◽  
Marco D’Alonzo ◽  
Angelo Maravita ◽  
Vincenzo Di Lazzaro ◽  
...  

Abstract Motor planning and execution require a representational map of our body. Since the body can assume different postures, it is not known how it is represented in this map. Moreover, is the generation of the motor command favored by some body configurations? We investigated the existence of a centrally favored posture of the hand for action, in search of physiological and behavioral advantages due to central motor processing. We tested two opposite hand pinch grips, equally difficult and commonly used: forearm pronated, thumb-down, index-up pinch against the same grip performed with thumb-up. The former revealed faster movement onset, sign of faster neural computation, and faster target reaching. It induced increased corticospinal excitability, independently on pre-stimulus tonic muscle contraction. Remarkably, motor excitability also increased when thumb-down pinch was only observed, imagined, or prepared, actually keeping the hand at rest. Motor advantages were independent of any concurrent modulation due to somatosensory input, as shown by testing afferent inhibition. Results provide strong behavioral and physiological evidence for a preferred hand posture favoring brain motor control, independently by somatosensory processing. This suggests the existence of a baseline postural representation that may serve as an a priori spatial reference for body–space interaction.


Author(s):  
Mohamed S. El-Tamawy ◽  
Moshera H. Darwish ◽  
Mye A. Basheer ◽  
Abdelazim M. Reda ◽  
Mahmoud Elzanaty ◽  
...  

Abstract Background The concepts of brain excitability are still re-wiring in response to changes in environment. Ambulation is often limited in stroke patients. Objective To determine the effect of cycling exercise on motor excitability and consequences on spatiotemporal gait parameters in stroke patients. Methods Forty male ischemic stroke patients were included; their age ranged from 45 to 60 years. The patients were assigned into two equal groups: control group (GI) and study group (GII). The GI is treated by a design physical therapy program in the form of task-oriented progressive resistance exercise for lower limb muscles, and the GII is treated by the same program in addition to cycling exercise for 30 min. Treatment was conducted three times per week for 10 weeks. The excitability over motor area (Cz) was assessed by the quantitative electroencephalogram (QEEG). The spatiotemporal gait parameters were assessed by the Biodex Gait Trainer 2TM. Results There was a significant increase of speed, step cycle, and step length of the affected side (P < 0.05) and a non-significant difference of step length of the non-affected side in the study group compared with that of the control group (P > 0.05). There was a significant increase of excitability over motor area (Cz) in the study group compared with that of the control group (P < 0.05). Conclusion Cycling exercise has a positive effect on excitability over motor area of lower limbs and can improve gait parameters in stroke patients.


Neurosurgery ◽  
2020 ◽  
Author(s):  
Alexandra Gomes dos Santos ◽  
Cintya Yukie Hayashi ◽  
Cesar Cimonari de Almeida ◽  
Wellingson Silva Paiva ◽  
Daniel Ciampi de Andrade ◽  
...  

2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Jolanta Zwolińska

Introduction: PILER light affects the sensory and motor excitability of the tissue, and these changes may depend on the color of the filter used in the irradiations. Objective: To evaluate changes in neuromuscular excitability after PILER irradiation with different filters. To evaluate the usefulness of the I/T curve coefficient in neuromuscular excitability test. Material and methods: 60 healthy volunteers assigned to four groups: group v - without filter (n=15), group x - red filter (n=15), group y - blue filter (n=15), group z - placebo (n=15) had biceps brachii irradiated with PILER light. Outcome Measures: I/T curve coefficient for rectangular (■I/T coeff) and triangular (▲I/T coeff) pulses for sensory and motor excitability and the pressure pain threshold (PPT). Results: ■I/T coeff (p=0.0013) and ▲I/T coeff (p=0.0011) for sensory excitability increased significantly in the irradiated group. ■I/T coeff (p=0.0356) and ▲I/T coeff (p=0.0022) increased significantly after blue light irradiation. A significant increase in the▲I/T coeff (p=0.0439) in motor excitability was observed in the irradiated group. ■I/T coeff (p=0.0309) and ▲I/T coeff (p=0.0064) increased significantly after blue light irradiation. Conclusion: PILER light may reduce muscle excitability. Using a blue filter may increase the sensory threshold, and myorelaxation. Further experiments are necessary to confirm the usefulness of the I/T curve coefficient.


Sign in / Sign up

Export Citation Format

Share Document