scholarly journals Impact of soil salinity on the cowpea nodule-microbiome and the isolation of halotolerant PGPR strains to promote plant growth under salinity stress

2019 ◽  
Author(s):  
Salma Mukhtar ◽  
Ann M. Hirsch ◽  
Noor Khan ◽  
Kauser A. Malik ◽  
Ethan A. Humm ◽  
...  

AbstractFour soil samples (SS-1—SS-4) isolated from semi-arid soils in Punjab, Pakistan were used as inocula for cowpea (Vigna unguiculata L.) grown under salinity stress to analyze the composition of bacteria in the rhizosphere and within nodules through cultivation-dependent and cultivation-independent methods. Two cowpea varieties, 603 and the salt-tolerant CB 46, were each inoculated with four different native soil samples, and data showed that plants inoculated with soil samples SS-2 and SS-4 grew better than plants inoculated with soil samples SS-1 and SS-3. Bacteria were isolated from both soils and nodules, and 34 of the 51 original isolates tested positive for PGPR traits in plate assays with many exhibiting multiple plant growth-promoting properties. A number of isolates were positive for all PGPR traits tested. For the microbiome studies, environmental DNA (eDNA) was isolated from SS-1 and SS-4, which represented the extremes of the Pakistan soils to which the plants responded, and by 16S rRNA gene sequencing analysis were found to consist mainly of Actinobacteria, Firmicutes, and Proteobacteria. However, sequencing analysis of eDNA isolated from cowpea nodules established by the trap plants grown in the four Pakistan soils indicated that the nodule microbiome consisted almost exclusively of Proteobacterial sequences, particularly Bradyrhizobium. Yet, many other bacteria including Rhizobium, Mesorhizobium, Pseudomonas, as well as Paenibacillus, Bacillus as well as non-proteobacterial genera were isolated from the nodules of soil-inoculated cowpea plants. This discrepancy between the bacteria isolated from cowpea nodules (Proteobacteria and non-Proteobacteria) versus those detected in the nodule microbiome (Proteobacteria) needs further study.

2020 ◽  
Vol 4 (4) ◽  
pp. 364-374
Author(s):  
Salma Mukhtar ◽  
Ann M. Hirsch ◽  
Noor Khan ◽  
Kauser A. Malik ◽  
Ethan A. Humm ◽  
...  

Cowpea is one of the major legumes cultivated in arid and semiarid regions of the world. Four soil-microbial samples (SS-1 through SS-4) collected from semiarid soils in Punjab, Pakistan were planted with cowpea (Vigna unguiculata) crops, which were grown under salinity stress to analyze bacterial composition in the rhizosphere and within nodules using cultivation-dependent and -independent methods. Two varieties, 603 and the salt-tolerant CB 46, were each inoculated with or without the four different native soil samples or grown in medium either N-deficient (−N) or supplemented with N (+N). Plants inoculated with soil samples SS-2 and SS-4 grew better than plants inoculated with SS-1- and SS-3 and grew comparably with the +N controls. Environmental DNA (eDNA) was isolated from SS-1 and SS-4, and, by 16S ribosomal RNA sequencing, the soil microbiomes consisted mainly of Actinobacteria, Firmicutes, Proteobacteria, and other nonproteobacterial genera. However, analysis of eDNA isolated from cowpea nodules established by the trap plants showed that the nodule microbiome consisted almost exclusively of proteobacterial sequences, particularly species of Bradyrhizobium. Bacteria were isolated from both soils and nodules, and 34 of the 51 isolates tested positive for plant-growth-promoting rhizobacteria traits in plate assays. Many could serve as future inocula for crops in arid soils. The discrepancy between the types of bacteria isolated by culturing bacteria isolated from surface-sterilized cowpea nodules (proteobacteria and nonproteobacteria) versus those detected by sequencing DNA isolated from the nodules (proteobacteria) from cowpea nodules (proteobacteria and nonproteobacteria) versus those detected in the nodule microbiome (proteobacteria) needs further study.


Author(s):  
R. Thamizh Vendan ◽  
D. Balachandar

Background: Symbiotic associations between legumes and Rhizobia are ancient and fundamental. However, the plant growth-promoting endophytes other than Rhizobia are not yet fully explored for pulses productivity. The present study was aimed to isolate efficient endophytic bacteria from pulses, assess their diversity, screen their plant growth-promoting activities and to test their potential as bio inoculants for pulses.Methods: We have isolated several endophytic bacteria from pulse crops more specifically from blackgram (Vigna mungo) and greengram (Vigna radiata). After careful screening, 15 promising endophytic isolates were selected for this study. The identification of endophytic bacterial isolates was performed by 16S rRNA gene sequencing. The isolates were tested for their potential for the plant growth-promoting traits such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore secretion and antifungal activity. Pot culture experiments were conducted with the screened potential endophytic cultures.Result: The 16S rRNA gene sequencing revealed that species of Enterobacter, Bacillus, Pantoea, Pseudomonas, Acromobacter, Ocrobacterium were found as endophytes in blackgram and greengram. The in vitro screening identified Bacillus pumilus (BG-E6), Pseudomonas fluorescens (BG-E5) and Bacillus licheniformis (BG-E3) from blackgram and Pseudomonas chlororaphis (GG-E2) and Bacillus thuringiensis (GG-E7) from greengram as potential plant growth-promoting endophytes. These strains showed antagonism against plant pathogenic fungi. Upon inoculation of these endophytic PGPR strains, the blackgram and greengram growth and yield got increased. Among the strains, BG-E6 recorded 14.7% increased yield in blackgram and GG-E2 accounted for a 19.5% yield increase in greengram compared to respective uninoculated control. The experimental results showed that there was a host specificity found among the endophytic bacterial cultures with pulses. The cross inoculation of endophytic strains did not perform well to enhance the growth and yield of their alternate hosts. 


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1987
Author(s):  
Fahad Alotaibi ◽  
Soon-Jae Lee ◽  
Marc St-Arnaud ◽  
Mohamed Hijri

Phytoremediation, a method of phytomanagement using the plant holobiont to clean up polluted soils, is particularly effective for degrading organic pollutants. However, the respective contributions of host plants and their associated microbiota within the holobiont to the efficiency of phytoremediation is poorly understood. The identification of plant-associated bacteria capable of efficiently utilizing these compounds as a carbon source while stimulating plant-growth is a keystone for phytomanagement engineering. In this study, we sampled the rhizosphere and the surrounding bulk soil of Salixpurpurea and Eleocharis obusta from the site of a former petrochemical plant in Varennes, QC, Canada. Our objectives were to: (i) isolate and identify indigenous bacteria inhabiting these biotopes; (ii) assess the ability of isolated bacteria to utilize alkanes and polycyclic aromatic hydrocarbons (PAHS) as the sole carbon source, and (iii) determine the plant growth-promoting (PGP) potential of the isolates using five key traits. A total of 438 morphologically different bacterial isolates were obtained, purified, preserved and identified through PCR and 16S rRNA gene sequencing. Identified isolates represent 62 genera. Approximately, 32% of bacterial isolates were able to utilize all five different hydrocarbons compounds. Additionally, 5% of tested isolates belonging to genera Pseudomonas, Acinetobacter, Serratia, Klebsiella, Microbacterium, Bacillus and Stenotrophomonas possessed all five of the tested PGP functional traits. This culture collection of diverse, petroleum-hydrocarbon degrading bacteria, with multiple PGP traits, represents a valuable resource for future use in environmental bio- and phyto-technology applications.


2015 ◽  
Vol 64 (4) ◽  
pp. 339-349 ◽  
Author(s):  
Pooja Shrivastava ◽  
Rajesh Kumar ◽  
Mahesh Yandigeri ◽  
Nityanand Malviya ◽  
Dilip Arora

A total of 66 actinomycetes isolates were isolated from mangroves of Andhra Pradesh, India, using various enrichment techniques and pre-treatments. The samples were collected from Coringa mangrove ecosystem and pre-treated by enrichment with CaCO3, sodium dodecyl sulphate and phenol, plated on the media supplemented with cycloheximide (50 mg/ml), nystatin (25 mg/ml) and nalidixic acid (50 mg/ml). The population count of actinomycetes fluctuated from 1.9×105 to 8.0×105/g soil. Out of the isolated 66 actinomycetes, 8 isolates possessing plant growth promoting potential were further studied and characterized by physiological and biochemical traits and identified by 16S rRNA gene sequencing as different species of Streptomycetes genera.


2019 ◽  
Vol 6 ◽  
pp. 1-9
Author(s):  
Pramod Poudel ◽  
Ashish Nepal ◽  
Rashmi Roka Magar ◽  
Pratibha Rauniyar ◽  
Lil Buda Magar

Objectives: To isolate arsenic resistant Bacillus spp. and to determine plant growth promoting activities.  Methods: Eighteen soil samples were collected from the agricultural soil of Terai region of Nepal. Selective isolation of Bacillus species was done by heating the soil at 80 ºC for 15 minutes before the isolation. Nutrient agar was used as an isolation medium. Screening of arsenic resistant Bacillus species was done using nutrient agar supplemented with 100 ppm sodium arsenate and sodium arsenite. For plant growth promoting activity; IAA production was detected taking 0.1% tryptophane and measuring absorbance at 540 nm, NH3 production was tested by Nessler’s reagent and phosphate solubilization activity was detected by growing colonies on Pikovskaya’s agar. Sugar assimilation test was performed to identify the isolates. Most potent arsenic resistant isolate was identified by 16S rRNA gene sequencing. Results: Among 54 randomly selected isolates, 42 were found to be Gram-positive rod-shaped, spore-forming while 12 isolates were Gram-negative bacteria. The isolates IN12a, M12a and BG34a showed growth on 100 ppm sodium arsenite containing NA. Only isolate M12a tolerated up to 1000 ppm and 15000 ppm of sodium arsenite and sodium arsenate respectively, while other isolates could not grow above 400 ppm sodium arsenite. The isolates IN12a and M12a were able to produce IAA and solubilize phosphate while BG34a could not. Both the isolates IN12a and M12a were able to utilize the sugars glucose, fructose, lactose, sucrose, galactose, mannose, mannitol, maltose and xylose.  Based on the 16S rRNA gene sequencing, isolate M12a was identified to be Bacillus flexus with highest similarity of 99.2%. Conclusion: Arsenic resistant and plant growth promoting Bacillus spp. was isolated from the agricultural soil of Terai region of Nepal


2021 ◽  
Author(s):  
Lalit K. Chaurasia ◽  
Ranjan K. Tirwa ◽  
Buddhiman Tamang

Abstract The lipopeptide biosurfactants' chemical characteristics from the lactic acid bacteria isolated from milk and milk products were studied and their effect on maize plant growth. The oil displacement test was performed as a primary screening method to select the BS producing bacteria. Enterococcus faecium LM5.2 had the maximum emulsification index of 45.1±3 and reduced the surface tension to 32.98 ± 0.23% among all the isolates. E. faecium LM5.2 efficiently produced 945.26 ± 4.62 mg/l biosurfactants within 48 hours in MRS broth under the optimum conditions. The confirmation of the identity of the isolate LM5.2 was done with physiochemical tests and 16S rRNA gene sequencing. The molecular phylogenetic relationship was evaluated by the Neighbour-Joining phylogenetic method. The biosurfactant was purified by TLC and identified as lipopeptide-like iturines and surfactins based on Rf values. Mass spectroscopy, NMR, and FTIR analysis also confirmed the biosurfactant's identity as the derivatives of iturin and surfactin. Both the biosurfactant and its producer bacterium were evaluated for their plant growth-promoting activity, and it was found that the biosurfactant and the bacterium could enhance plant growth. To the best of our knowledge, this is the first report of lipopeptide biosurfactant production from Enterococcus faecium. Moreover, the study also showed that the biosurfactant and biosurfactant producing E. faecium LM5.2 could be an eco-friendly plant growth-promoting agent.


2016 ◽  
Vol 68 (2) ◽  
pp. 363-374 ◽  
Author(s):  
Pankaj Kumar ◽  
Ramesh Dubey ◽  
Dinesh Maheshwari ◽  
Yong-Ha Park ◽  
Vivek Bajpai

In vitro screening of plant growth-promoting (PGP) traits was carried out using eight Pseudomonas spp., PPR1 to PPR8, isolated from the rhizosphere of Phaseolus vulgaris growing on the Uttarakhand Himalayan range in India. All the isolates were fast growers, positive for catalase, oxidase and urease activities, and utilized lactose and some amino acids. All the isolates were indole acetic acid (IAA) positive, however PPR8 solubilized potassium and zinc along with various other types of inorganic (tricalcium, dicalcium and zinc phosphate) and organic (calcium phytate) phosphates, as well as producing siderophore and ACC deaminase. PPR8 also produced cyanogens, extracellular chitinase, ?-1,3-glucanase, ?-1,4-glucanase and oxalate oxidase. Based on the PGP traits of all isolates, PPR8 was found to be the most potent plant growth-promoting rhizobacteria (PGPR). Further, PPR8 was identified as Pseudomonas sp. PPR8, based on 16S rRNA gene sequencing analysis. Moreover, the PGP activities of PPR8 confirmed it to be a potent biocontrol agent, inhibiting the growth of various plant pathogenic fungi. This study reveals the potential of Pseudomonas sp. PPR8 to be used as a good bioinoculant for growth promotion of common bean and for the protection of important legume crops from various deleterious phytopathogens.


2018 ◽  
Author(s):  
Madhusmita Borah ◽  
Saurav Das ◽  
Himangshu Baruah ◽  
Robin C. Boro ◽  
Madhumita Barooah

AbstractIn this paper, we report the endophytic microbial diversity of cultivated and wild Oryza sativa plants including their functional traits related to multiple traits that promote plant growth and development. Around 255 bacteria were isolated out of which 70 isolates were selected for further studies based on their morphological differences. The isolates were characterized both at biochemical and at the molecular level by 16s rRNA gene sequencing. Based on 16S rRNA gene sequencing the isolates were categorized into three major phyla, viz, Firmicutes (57.1 %), Actinobacteria (20.0 %) and Proteobacteria (22.8 %). Firmicutes was the dominant group of bacteria of which the most abundant genus was Bacillus. The isolates were further screened in vitro for plant growth promoting activities which revealed a hitherto unreported endophytic bacterial isolate, Microbacteriaceae bacterium RS01 11 as the highest secretor of a phytohormone, IAA (28.39 ± 1.39 μg/ml) and GA (67.23 ± 1.83 μg/ml). Bacillus subtilis RHS 01 displayed highest phosphate solubilizing activity (81.70 ± 1.98 μg/ml) while, Microbacterium testaceum MK LS01, and Microbacterium trichothecenolyticum MI03 L05 exhibited highest potassium solubilizing activity (53.42±0.75μg/ml) and zinc solubilizing efficiency (157.50%) respectively. Bacillus barbaricus LP20 05 produced highest siderophore units (64.8 %). Potential plant growth promoting isolated were tested in vivo in pot culture under greenhouse conditions. A consortium consisting of Microbacteriaceae bacterium RS01 11, Bacillus testaceum MK LS01 and Bacillus subtilis RHS promoted plant growth and increased the yield 3.4 fold in rice when compared to control T0 when tested in pot culture and reduce application rates of chemical fertilizer to half the recommended dose. Our study confirms the potentiality of the rice endophytes isolated as good plant growth promoter and effective biofertilizer.


2021 ◽  
Vol 9 (11) ◽  
pp. 2203
Author(s):  
Anjney Sharma ◽  
Rajesh Kumar Singh ◽  
Pratiksha Singh ◽  
Anukool Vaishnav ◽  
Dao-Jun Guo ◽  
...  

Soil salinity causes severe environmental stress that affects agriculture production and food security throughout the world. Salt-tolerant plant-growth-promoting rhizobacteria (PGPR) and nitric oxide (NO), a distinctive signaling molecule, can synergistically assist in the alleviation of abiotic stresses and plant growth promotion, but the mechanism by which this happens is still not well known. In the present study, in a potential salt-tolerant rhizobacteria strain, ASN-1, growth up to 15% NaCl concentration was achieved with sugarcane rhizosphere soil. Based on 16S-rRNA gene sequencing analysis, the strain ASN-1 was identified as a Bacillus xiamenensis. Strain ASN-1 exhibits multiple plant-growth-promoting attributes, such as the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, HCN, ammonia, and exopolysaccharides as well as solubilized phosphate solubilization. Biofilm formation showed that NO enhanced the biofilm and root colonization capacity of the PGPR strain ASN-1 with host plants, evidenced by scanning electron microscopy. The greenhouse study showed that, among the different treatments, the combined application of PGPR and sodium nitroprusside (SNP) as an NO donor significantly (p ≤ 0.05) enhanced sugarcane plant growth by maintaining the relative water content, electrolyte leakage, gas exchange parameters, osmolytes, and Na+/K+ ratio. Furthermore, PGPR and SNP fertilization reduced the salinity-induced oxidative stress in plants by modulating the antioxidant enzyme activities and stress-related gene expression. Thus, it is believed that the acquisition of advanced information about the synergistic effect of salt-tolerant PGPR and NO fertilization will reduce the use of harmful chemicals and aid in eco-friendly sustainable agricultural production under salt stress conditions.


Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 27
Author(s):  
Rim Tinhinen Maougal ◽  
Maya Kechid ◽  
Chaima Ladjabi ◽  
Abdelhamid Djekoun

Rhizobacteria play an important role in maintaining soil balance. Among these bacteria, there are those taht have shown their ability to promote the growth of plants, known as Plant Growth Promoting Rhizobacteria (PGPR). In our work, we are interested in characterizing 110 bacterial strains isolated in the field in the region of Ben Badis (Constantine Algeria) from 5 varieties of faba bean. Phenotypic and biochemical characterization showed that most of the isolates are cream-colored, slightly raised, flat and opaque, Gram−, catalase+ and oxidase−, and Bacillus form. PCA analysis allowed us to select 40 isolates with a high degree of variability to continue our work. The results obtained have directed us towards different taxonomic groups (rhizobium, Pseudomonas, Bacillus etc.). The evaluation of the PGPR potential of bacteria (phytostimulation, biofertilization and biocontrol), showed that 100% of bacteria are able to produce auxin at different concentrations, with the highest concentration (177.77 µg/mL) for the isolate 6, and that more than 50% of isolates are capable of producing nitrogen, ammonia and phytate mineralization. These PGPR traits have a direct effect on plant growth of five varieties of the faba bean and can be used to select the best performing bacteria for inoculation tests.


Sign in / Sign up

Export Citation Format

Share Document