scholarly journals Impact of Soil Salinity on the Cowpea Nodule-Microbiome and the Isolation of Halotolerant PGPR Strains to Promote Plant Growth under Salinity Stress

2020 ◽  
Vol 4 (4) ◽  
pp. 364-374
Author(s):  
Salma Mukhtar ◽  
Ann M. Hirsch ◽  
Noor Khan ◽  
Kauser A. Malik ◽  
Ethan A. Humm ◽  
...  

Cowpea is one of the major legumes cultivated in arid and semiarid regions of the world. Four soil-microbial samples (SS-1 through SS-4) collected from semiarid soils in Punjab, Pakistan were planted with cowpea (Vigna unguiculata) crops, which were grown under salinity stress to analyze bacterial composition in the rhizosphere and within nodules using cultivation-dependent and -independent methods. Two varieties, 603 and the salt-tolerant CB 46, were each inoculated with or without the four different native soil samples or grown in medium either N-deficient (−N) or supplemented with N (+N). Plants inoculated with soil samples SS-2 and SS-4 grew better than plants inoculated with SS-1- and SS-3 and grew comparably with the +N controls. Environmental DNA (eDNA) was isolated from SS-1 and SS-4, and, by 16S ribosomal RNA sequencing, the soil microbiomes consisted mainly of Actinobacteria, Firmicutes, Proteobacteria, and other nonproteobacterial genera. However, analysis of eDNA isolated from cowpea nodules established by the trap plants showed that the nodule microbiome consisted almost exclusively of proteobacterial sequences, particularly species of Bradyrhizobium. Bacteria were isolated from both soils and nodules, and 34 of the 51 isolates tested positive for plant-growth-promoting rhizobacteria traits in plate assays. Many could serve as future inocula for crops in arid soils. The discrepancy between the types of bacteria isolated by culturing bacteria isolated from surface-sterilized cowpea nodules (proteobacteria and nonproteobacteria) versus those detected by sequencing DNA isolated from the nodules (proteobacteria) from cowpea nodules (proteobacteria and nonproteobacteria) versus those detected in the nodule microbiome (proteobacteria) needs further study.

2019 ◽  
Author(s):  
Salma Mukhtar ◽  
Ann M. Hirsch ◽  
Noor Khan ◽  
Kauser A. Malik ◽  
Ethan A. Humm ◽  
...  

AbstractFour soil samples (SS-1—SS-4) isolated from semi-arid soils in Punjab, Pakistan were used as inocula for cowpea (Vigna unguiculata L.) grown under salinity stress to analyze the composition of bacteria in the rhizosphere and within nodules through cultivation-dependent and cultivation-independent methods. Two cowpea varieties, 603 and the salt-tolerant CB 46, were each inoculated with four different native soil samples, and data showed that plants inoculated with soil samples SS-2 and SS-4 grew better than plants inoculated with soil samples SS-1 and SS-3. Bacteria were isolated from both soils and nodules, and 34 of the 51 original isolates tested positive for PGPR traits in plate assays with many exhibiting multiple plant growth-promoting properties. A number of isolates were positive for all PGPR traits tested. For the microbiome studies, environmental DNA (eDNA) was isolated from SS-1 and SS-4, which represented the extremes of the Pakistan soils to which the plants responded, and by 16S rRNA gene sequencing analysis were found to consist mainly of Actinobacteria, Firmicutes, and Proteobacteria. However, sequencing analysis of eDNA isolated from cowpea nodules established by the trap plants grown in the four Pakistan soils indicated that the nodule microbiome consisted almost exclusively of Proteobacterial sequences, particularly Bradyrhizobium. Yet, many other bacteria including Rhizobium, Mesorhizobium, Pseudomonas, as well as Paenibacillus, Bacillus as well as non-proteobacterial genera were isolated from the nodules of soil-inoculated cowpea plants. This discrepancy between the bacteria isolated from cowpea nodules (Proteobacteria and non-Proteobacteria) versus those detected in the nodule microbiome (Proteobacteria) needs further study.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


2005 ◽  
Vol 82 (3) ◽  
pp. 85-102 ◽  
Author(s):  
C.L. Doumbou ◽  
M.K. Hamby Salove ◽  
D.L. Crawford ◽  
C. Beaulieu

Actinomycetes represent a high proportion of the soil microbial biomass and have the capacity to produce a wide variety of antibiotics and of extracellular enzymes. Several strains of actinomycetes have been found to protect plants against plant diseases. This review focuses on the potential of actinomycetes as (a) source of agroactive compounds, (b) plant growth promoting organisms, and (c) biocontrol tools of plant diseases. This review also addresses examples of biological control of fungal and bacterial plant pathogens by actinomycetes species which have already reached the market or are likely to be exploited commercially within the next few years.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang In Lee ◽  
Jungmin Choi ◽  
Hyunhee Hong ◽  
Jun Haeng Nam ◽  
Bernadine Strik ◽  
...  

AbstractMicrobial communities on soil are fundamental for the long-term sustainability of agriculture ecosystems. Microbiota in soil would impact the yield and quality of blueberries since microbial communities in soil can interact with the rhizosphere of plant. This study was conducted to determine how different mulching treatments induce changes in soil microbial composition, diversity, and functional properties. A total of 150 soil samples were collected from 5 different mulch treatments (sawdust, green weed mat, sawdust topped with green weed mat, black weed mat, and sawdust topped with black weed mat) at 3 different depths (bottom, middle, and top region of 20 cm soil depth) from 2 different months (June and July 2018). A total of 8,583,839 sequencing reads and 480 operational taxonomic units (OTUs) of bacteria were identified at genus level. Eight different plant growth promoting rhizobacteria (PGPR) were detected, and the relative abundances of Bradyrhizobium, Bacillus, and Paenibacillus were more than 0.1% among all soil samples. Sampling depth and month of soil samples impacted the amount of PGPR, while there were no significant differences based on mulch type. Functional properties of bacteria were identified through PICRUSt2, which found that there is no significant difference between mulch treatment, depth, and month. The results indicated that sampling month and depth of soil impacted the relative abundance of PGPR in soil samples, but there were no significant differences of functional properties and beneficial microbial communities based on mulch type.


Author(s):  
Akanksha Gupta ◽  
Sandeep Kumar Singh ◽  
Manoj Kumar Singh ◽  
Vipin Kumar Singh ◽  
Arpan Modi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document