scholarly journals GO: A functional reporter system to identify and enrich base editing activity

2019 ◽  
Author(s):  
Alyna Katti ◽  
Miguel Foronda ◽  
Jill Zimmerman ◽  
Bianca Diaz ◽  
Maria Paz Zafra ◽  
...  

ABSTRACTBase editing (BE) is a powerful tool for engineering single nucleotide variants (SNVs) and has been used to create targeted mutations in cell lines, organoids, and animal models. Recent development of new BE enzymes has provided an extensive toolkit for genome modification; however, identifying and isolating edited cells for analysis has proven challenging. Here we report a “Gene On” (GO) reporter system that indicates precise cytosine or adenine base editing in situ with high sensitivity and specificity. We test GO using an activatable GFP and use it to measure the kinetics, efficiency, and PAM specificity of a range of new BE variants. Further, GO is flexible and can be easily adapted to induce expression of numerous genetically encoded markers, antibiotic resistance genes, or enzymes such as Cre recombinase. With these tools, GO can be exploited to functionally link BE events at endogenous genomic loci to cellular enzymatic activities in human and mouse cell lines and organoids. Thus, GO provides a powerful approach to increase the practicality and feasibility of implementing CRISPR BE in biomedical research.

2020 ◽  
Vol 48 (6) ◽  
pp. 2841-2852 ◽  
Author(s):  
Alyna Katti ◽  
Miguel Foronda ◽  
Jill Zimmerman ◽  
Bianca Diaz ◽  
Maria Paz Zafra ◽  
...  

Abstract Base editing (BE) is a powerful tool for engineering single nucleotide variants (SNVs) and has been used to create targeted mutations in cell lines, organoids and animal models. Recent development of new BE enzymes has provided an extensive toolkit for genome modification; however, identifying and isolating edited cells for analysis has proven challenging. Here we report a ‘Gene On’ (GO) reporter system that indicates precise cytosine or adenine base editing in situ with high sensitivity and specificity. We test GO using an activatable GFP and use it to measure the kinetics, efficiency and PAM specificity of a range of new BE variants. Further, GO is flexible and can be easily adapted to induce expression of numerous genetically encoded markers, antibiotic resistance genes or enzymes, such as Cre recombinase. With these tools, GO can be exploited to functionally link BE events at endogenous genomic loci to cellular enzymatic activities in human and mouse cell lines and organoids. Thus, GO provides a powerful approach to increase the practicality and feasibility of implementing CRISPR BE in biomedical research.


Author(s):  
Suraj Mathur

This prospective study was done in the Department of Radio diagnosis Govt. Medical College, Kozhikode. A total of 65 patients who were referred to our department with clinical suspicion of endometrial lesions and incidentally detected endometrial lesions on ultrasonography underwent transvaginal ultrasound and subsequent Imaging evaluation of pelvis MRI has very high sensitivity (95%) and specificity (98%) and is almost as accurate (97%) as histopathology in differentiating benign from malignant lesions. Addition of DWI with ADC mapping to conventional MRI increases its accuracy even more. However there is inherent limitation to MRI in detecting carcinoma in situ and micrometastasis. Keywords: TVS, MRI, Sensitivity, Specificity, Histopathology.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


2001 ◽  
Vol 82 (2) ◽  
pp. 350-354 ◽  
Author(s):  
Yuhong Xiao ◽  
Shigemi Sato ◽  
Takaaki Oguchi ◽  
Kaori Kudo ◽  
Yoshihito Yokoyama ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


2021 ◽  
Author(s):  
Jin Teng, Melody Chung ◽  
Chi Ming Laurence Lau ◽  
Ying Chau

Hydrogel presents as foreign material to the host and participates in immune responses which would skew the biofunctions of immunologic loads (antigen and adjuvants) for in-situ DC priming. This study...


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 3050-3059 ◽  
Author(s):  
J Castrop ◽  
D van Wichen ◽  
M Koomans-Bitter ◽  
M van de Wetering ◽  
R de Weger ◽  
...  

Abstract The TCF-1 gene encodes a putative transcription factor with affinity for a sequence motif occurring in a number of T-cell enhancers. TCF-1 mRNA was originally found to be expressed in a T cell-specific fashion within a set of human and mouse cell lines. In contrast, expression reportedly occurs in multiple nonlymphoid tissues during murine embryogenesis. We have now raised a monoclonal antibody to document expression and biochemistry of the human TCF-1 protein. As expected, the TCF-1 protein was detectable only in cell lines of T lineage. Its expression was always restricted to the nucleus. Immunohistochemistry on a panel of human tissues revealed that the TCF-1 protein was found exclusively in thymocytes and in CD3+ T cells in peripheral lymphoid tissues. Western blotting yielded a set of bands ranging from 25 kD to 55 kD, resulting from extensive alternative splicing. The TCF-1 protein was detectable in all samples of a set of 22 T-cell malignancies of various stages of maturation, but was absent from a large number of other hematologic neoplasms. These observations imply a T cell-specific function for TCF-1, a notion corroborated by recent observations on Tcf-1 knock-out mice. In addition, these results indicate that nuclear TCF-1 expression can serve as a pan-T-lineage marker in the diagnosis of lymphoid malignancies.


Sign in / Sign up

Export Citation Format

Share Document