scholarly journals Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells

2016 ◽  
Vol 30 (17) ◽  
pp. 1991-2004 ◽  
Author(s):  
Yael Yoffe ◽  
Maya David ◽  
Rinat Kalaora ◽  
Lital Povodovski ◽  
Gilgi Friedlander ◽  
...  
PLoS ONE ◽  
2009 ◽  
Vol 4 (6) ◽  
pp. e6082 ◽  
Author(s):  
Ludovic Vallier ◽  
Thomas Touboul ◽  
Zhenzhi Chng ◽  
Minodora Brimpari ◽  
Nicholas Hannan ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Xuemei Fu ◽  
Zhili Rong ◽  
Shengyun Zhu ◽  
Xiaocheng Wang ◽  
Yang Xu ◽  
...  

Development ◽  
2020 ◽  
Vol 147 (23) ◽  
pp. dev190298
Author(s):  
Siqi Yi ◽  
Xiaotian Huang ◽  
Shixin Zhou ◽  
Yuan Zhou ◽  
Michele K. Anderson ◽  
...  

ABSTRACTE protein transcription factors are crucial for many cell fate decisions. However, the roles of E proteins in the germ-layer specification of human embryonic stem cells (hESCs) are poorly understood. We disrupted the TCF3 gene locus to delete the E protein E2A in hESCs. E2A knockout (KO) hESCs retained key features of pluripotency, but displayed decreased neural ectoderm coupled with enhanced mesoendoderm outcomes. Genome-wide analyses showed that E2A directly regulates neural ectoderm and Nodal pathway genes. Accordingly, inhibition of Nodal or E2A overexpression partially rescued the neural ectoderm defect in E2A KO hESCs. Loss of E2A had little impact on the epigenetic landscape of hESCs, whereas E2A KO neural precursors displayed increased accessibility of the gene locus encoding the Nodal agonist CRIPTO. Double-deletion of both E2A and HEB (TCF12) resulted in a more severe neural ectoderm defect. Therefore, this study reveals critical context-dependent functions for E2A in human neural ectoderm fate specification.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Idse Heemskerk ◽  
Kari Burt ◽  
Matthew Miller ◽  
Sapna Chhabra ◽  
M Cecilia Guerra ◽  
...  

During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent way. Yet, in mammalian embryos, concentrations change rapidly compared to the time for making cell fate decisions. Here, we use human embryonic stem cells (hESCs) to address how changing morphogen levels influence differentiation, focusing on how BMP4 and Nodal signaling govern the cell-fate decisions associated with gastrulation. We show that BMP4 response is concentration dependent, but that expression of many Nodal targets depends on rate of concentration change. Moreover, in a self-organized stem cell model for human gastrulation, expression of these genes follows rapid changes in endogenous Nodal signaling. Our study shows a striking contrast between the specific ways ligand dynamics are interpreted by two closely related signaling pathways, highlighting both the subtlety and importance of morphogen dynamics for understanding mammalian embryogenesis and designing optimized protocols for directed stem cell differentiation.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see <xref ref-type="decision-letter" rid="SA1">decision letter</xref>).


PLoS Biology ◽  
2009 ◽  
Vol 7 (7) ◽  
pp. e1000149 ◽  
Author(s):  
Tibor Kalmar ◽  
Chea Lim ◽  
Penelope Hayward ◽  
Silvia Muñoz-Descalzo ◽  
Jennifer Nichols ◽  
...  

2009 ◽  
Vol 218 (3) ◽  
pp. 455-459 ◽  
Author(s):  
David Nury ◽  
Tui Neri ◽  
Michel Pucéat

Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Mickie Bhatia

Abstract The most common human cell-based therapy applied today is hematopoietic stem cell (HSC) transplantation. HSCs can be defined by two essential properties: self-renewal and multilineage hematopoietic differentiation. These combined HSC properties allow them to differentiate into all blood cell types (multilineage) in a sustained manner for the lifetime of the animal, which requires their ability to make cellular copies of themselves (self-renewal). These features can be tested by transplantation from donor to recipient and provide a functional basis to define and identify HSCs. Currently, human bone marrow (BM), mobilized peripheral blood, and umbilical cord blood (CB) represent the major sources of transplantable HSCs, but their availability for use is limited by both quantity and compatibility. Although increasing evidence suggests that somatic HSCs can be expanded to meet current needs, their in vivo potential is concomitantly compromised after ex vivo culture. Pluripotent human embryonic stem cells (hESCs) may provide an alternative. hESCs possess indefinite proliferative capacity in vitro, and have been shown to differentiate into the hematopoietic cell fate, giving rise to erythroid, myeloid, and lymphoid lineages using a variety of differentiation procedures. In most cases, hESC-derived hematopoietic cells show similar clonogenic progenitor capacity and primitive phenotype to somatic sources of hematopoietic progenitors, but possess limited in vivo repopulating capacity when transplanted into immunodeficient mice. Although this suggests HSC function can be derived from hESCs, the efficiency and quality of these cells must be characterized using surrogate models for potential clinical applications.


2017 ◽  
Author(s):  
Anastasiia Nemashkalo ◽  
Albert Ruzo ◽  
Idse Heemskerk ◽  
Aryeh Warmflash

AbstractParacrine signals maintain developmental states and create cell-fate patterns in vivo, and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro. Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells (“μColonies”) to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in μColonies and standard culture conditions and find that in μColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions, BMP4 acts as morphogen, but this effect requires secondary signals and particular cell densities. We further find that a “community effect” enforces a common fate within μColonies both in the state of pluripotency and when cells are differentiated, and that this effect allows more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation.Summary StatementWe quantitatively examined signaling and differentiation in hESC colonies of varying size treated with BMP4. We show that secondary signals result in morphogen and community effects that determine cell fates.


2021 ◽  
Author(s):  
Candice Byers ◽  
Catrina Spruce ◽  
Haley J. Fortin ◽  
Anne Czechanski ◽  
Steven C. Munger ◽  
...  

AbstractGenetically diverse pluripotent stem cells (PSCs) display varied, heritable responses to differentiation cues in the culture environment. By harnessing these disparities through derivation of embryonic stem cells (ESCs) from the BXD mouse genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, we demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome. Upon transition to formative pluripotency using epiblast-like cells (EpiLCs), B6 quickly dissolves naïve networks adopting gene expression modules indicative of neuroectoderm lineages; whereas D2 retains aspects of naïve pluripotency with little bias in differentiation. Genetic mapping identifies 6 major trans-acting loci co-regulating chromatin accessibility and gene expression in ESCs and EpiLCs, indicating a common regulatory system impacting cell state transition. These loci distally modulate occupancy of pluripotency factors, including TRIM28, P300, and POU5F1, at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacts chromatin accessibility in ESCs; while in EpiLCs the same locus subsequently influences gene expression, suggesting early chromatin priming. Consequently, the distal gene targets of this locus are enriched for neurogenesis genes and were more highly expressed when cells carried B6 haplotypes at this Chr 12 locus, supporting genetic regulation of biases in cell fate. Spontaneous formation of embryoid bodies validated this with B6 showing a propensity towards neuroectoderm differentiation and D2 towards definitive endoderm, confirming the fundamental importance of genetic variation influencing cell fate decisions.


Sign in / Sign up

Export Citation Format

Share Document