scholarly journals Corrigendum: Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies

2016 ◽  
Vol 26 (5) ◽  
pp. 717.1-717.1
Author(s):  
PingHsun Hsieh ◽  
August E. Woerner ◽  
Jeffrey D. Wall ◽  
Joseph Lachance ◽  
Sarah A. Tishkoff ◽  
...  
2016 ◽  
Vol 26 (3) ◽  
pp. 291-300 ◽  
Author(s):  
PingHsun Hsieh ◽  
August E. Woerner ◽  
Jeffrey D. Wall ◽  
Joseph Lachance ◽  
Sarah A. Tishkoff ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 737
Author(s):  
Issiaka Bagayoko ◽  
Marcos Giovanni Celli ◽  
Gustavo Romay ◽  
Nils Poulicard ◽  
Agnès Pinel-Galzi ◽  
...  

The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.


2012 ◽  
Vol 7 (4) ◽  
pp. 571-586 ◽  
Author(s):  
Andrzej Mazur ◽  
Piotr Koper

AbstractSoil bacteria, collectively named rhizobia, can establish mutualistic relationships with legume plants. Rhizobia often have multipartite genome architecture with a chromosome and several extrachromosomal replicons making these bacteria a perfect candidate for plasmid biology studies. Rhizobial plasmids are maintained in the cells using a tightly controlled and uniquely organized replication system. Completion of several rhizobial genome-sequencing projects has changed the view that their genomes are simply composed of the chromosome and cryptic plasmids. The genetic content of plasmids and the presence of some important (or even essential) genes contribute to the capability of environmental adaptation and competitiveness with other bacteria. On the other hand, their mosaic structure results in the plasticity of the genome and demonstrates a complex evolutionary history of plasmids. In this review, a genomic perspective was employed for discussion of several aspects regarding rhizobial plasmids comprising structure, replication, genetic content, and biological role. A special emphasis was placed on current post-genomic knowledge concerning plasmids, which has enriched the view of the entire bacterial genome organization by the discovery of plasmids with a potential chromosome-like role.


2009 ◽  
Vol 26 (6) ◽  
pp. 1357-1367 ◽  
Author(s):  
Laura B. Scheinfeldt ◽  
Shameek Biswas ◽  
Jennifer Madeoy ◽  
Caitlin F. Connelly ◽  
Eric E. Schadt ◽  
...  

2009 ◽  
Vol 39 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
R. Keers ◽  
A. E. Farmer ◽  
K. J. Aitchison

There is significant unmet need for more effective treatments for bipolar disorder. The drug discovery process is becoming prohibitively expensive. Hence, biomarker clues to assist or shortcut this process are now widely sought. Using the publicly available data from the whole genome association study conducted by the Wellcome Trust Case Control Consortium, we sought to identify groups of genetic markers (single nucleotide polymorphisms) in which each marker was independently associated with bipolar disorder, with a less stringent threshold than that set by the original investigators (p⩽1×10−4). We identified a group of markers occurring within the CACNA1C gene (encoding the alpha subunit of the calcium channel Cav1.2). We then ascertained that this locus had been previously associated with the disorder in both a smaller and a whole genome study, and that a number of drugs blocking this channel (including verapamil and diltiazem) had been trialled in the treatment of bipolar disorder. The dihydropyridine-based blockers such as nimodipine that bind specifically to Cav1.2 and are more penetrant to the central nervous system have shown some promising early results; however, further trials are indicated. In addition, migraine is commonly seen in affective disorder, and calcium channel antagonists are successfully used in the treatment of migraine. One such agent, flunarizine, is structurally related to other first-generation derivatives of antihistamines such as antipsychotics. This implies that flunarizine could be useful in the treatment of bipolar disorder, and, furthermore, that other currently licensed drugs should be investigated for antagonism of Cav1.2.


2021 ◽  
Vol 111 (1) ◽  
pp. 8-11
Author(s):  
Remco Stam ◽  
Pierre Gladieux ◽  
Boris A. Vinatzer ◽  
Erica M. Goss ◽  
Neha Potnis ◽  
...  

Population genetics has been a key discipline in phytopathology for many years. The recent rise in cost-effective, high-throughput DNA sequencing technologies, allows sequencing of dozens, if not hundreds of specimens, turning population genetics into population genomics and opening up new, exciting opportunities as described in this Focus Issue . Without the limitations of genetic markers and the availability of whole or near whole-genome data, population genomics can give new insights into the biology, evolution and adaptation, and dissemination patterns of plant-associated microbes.


2021 ◽  
Author(s):  
Helgi Hilmarsson ◽  
Arvind S. Kumar ◽  
Richa Rastogi ◽  
Carlos D. Bustamante ◽  
Daniel Mas Montserrat ◽  
...  

ABSTRACTAs genome-wide association studies and genetic risk prediction models are extended to globally diverse and admixed cohorts, ancestry deconvolution has become an increasingly important tool. Also known as local ancestry inference (LAI), this technique identifies the ancestry of each region of an individual’s genome, thus permitting downstream analyses to account for genetic effects that vary between ancestries. Since existing LAI methods were developed before the rise of massive, whole genome biobanks, they are computationally burdened by these large next generation datasets. Current LAI algorithms also fail to harness the potential of whole genome sequences, falling well short of the accuracy that such high variant densities can enable. Here we introduce Gnomix, a set of algorithms that address each of these points, achieving higher accuracy and swifter computational performance than any existing LAI method, while also enabling portable models that are particularly useful when training data are not shareable due to privacy or other restrictions. We demonstrate Gnomix (and its swift phase correction counterpart Gnofix) on worldwide whole-genome data from both humans and canids and utilize its high resolution accuracy to identify the location of ancient New World haplotypes in the Xoloitzcuintle, dating back over 100 generations. Code is available at https://github.com/AI-sandbox/gnomix.


Sign in / Sign up

Export Citation Format

Share Document