Labeling Pinocytotic Vesicles and Cytoplasm with Fluorescent Dextrans or Ficolls for Imaging

2009 ◽  
Vol 2009 (11) ◽  
pp. pdb.prot4951-pdb.prot4951
Author(s):  
B. Chazotte
Keyword(s):  

Author(s):  
R.H.M. Cross ◽  
C.E.J. Botha ◽  
A.K. Cowan ◽  
B.J. Hartley

Senescence is an ordered degenerative process leading to death of individual cells, organs and organisms. The detection of a conditional lethal mutant (achloroplastic) of Hordeum vulgare has enabled us to investigate ultrastructural changes occurring in leaf tissue during foliar senescence.Examination of the tonoplast structure in six and 14 day-old mutant tissue revealed a progressive degeneration and disappearance of the membrane, apparently starting by day six in the vicinity of the mitochondria associated with the degenerating proplastid (Fig. 1.) where neither of the plastid membrane leaflets is evident (arrows, Fig. 1.). At this stage there was evidence that the mitochondrial membranes were undergoing retrogressive changes, coupled with disorganization of cristae (Fig. 2.). Proplastids (P) lack definitive prolamellar bodies. The cytoplasmic matrix is largely agranular, with few endoplasmic reticulum (ER) cisternae or polyribosomal aggregates. Interestingly, large numbers of actively-budding dictysomes, associated with pinocytotic vesicles, were observed in close proximity to the plasmalemma of mesophyll cells (Fig. 3.). By day 14 however, mesophyll cells showed almost complete breakdown of subcellular organelle structure (Fig. 4.), and further evidence for the breakdown of the tonoplast. The final stage of senescence is characterized by the solubilization of the cell wall due to expression and activity of polygalacturonase and/or cellulose. The presence of dictyosomes with associated pinocytotic vesicles formed from the mature face, in close proximity to both the plasmalemma and the cell wall, would appear to support the model proposed by Christopherson for the secretion of cellulase. This pathway of synthesis is typical for secretory glycoproteins.



1975 ◽  
Vol 34 (03) ◽  
pp. 825-839 ◽  
Author(s):  
Francois M Booyse ◽  
Bonnie J Sedlak ◽  
Max E Rafelson

SummaryArterial endothelial cells were obtained from bovine aortae by mild treatment with collagenase and medium perfusion. These cells were cultured in RPMI-1640 medium containing 15 mM Hepes buffer and 35% fetal calf serum at pH 7.35. Essentially ah (90–95%) the effluent cells were viable and 80% of these cells attached to the substratum within 1 hour. Small patches of attached cells coalesced to form confluent monolayers in 3–5 days. Confluent monolayers of endothelial cells consisted of a homogeneous population of tightly packed, polygonal cells. Selected cultures were serially subcultured (trypsin-EDTA) for 12–14 months (30–35 passages) without any apparent change in morphology or loss of growth characteristics. Primary and three-month old (15 passages) cultures had population doubling times of 32–34 hours and 29–31 hours, respectively. These cells (primary and subcultures) did not require a minimum cell number to become established in culture. Bovine endothelial cells (primary, first, fifth and thirteenth passages) were characterized ultrastructurally by the presence of Weibel-Palade bodies, pinocytotic vesicles and microfilaments and immunologically by the presence of thrombosthenin-like contractile proteins and Factor VIII antigen. The intercellular junctions of post-confluent cultures stained specifically with silver nitrate. From these data, we concluded that identifiable endothelial cells could be obtained from bovine aortae and cultured and maintained for prolonged periods of time.



1971 ◽  
Vol 49 (3) ◽  
pp. 240-262 ◽  
Author(s):  
E. E. Daniel ◽  
Kathleen Robinson

The uptake and efflux of 22Na was studied in isolated rat uterine horns (both fresh and Na-rich) at 5, 15, 25, and 37 °C. Reduction of temperature from 37 °C to 25 or to 15 °C reduced 22Na uptake into, and efflux from, both the extracellular space and cells to the degree expected of a diffusion-controlled process (Q10 < 2). Reduction of the temperature to 5 °C during uptake into Na-rich horns revealed that a substantial fraction of cellular sodium became less exchangeable. At 5 °C, 22Na efflux was also markedly reduced, more than from ouabain or ATP depletion. Analysis of this change by curve-peeling and by reducing the temperature at various stages of efflux suggested that the main cause was a shift of 22Na from the larger, faster cellular fraction (No. 2) to the slower cellular fraction (No. 3). Bound 22Na was also markedly increased. The rate coefficients from curve-peeling for both cellular fractions were decreased. Radioactivity still in fraction 2 at 5 °C emerged at a rate of about half that at 15 °C. However, an overall coefficient for efflux of 22Na which would have emerged in fraction 2 at 15 or 25 °C showed that the Q10 for 22Na efflux between 5 and 15 °C was about 15. Tissues did not swell when they gained sodium at 5 °C. The effects of ouabain to increase 22Na influx and 42K efflux were eliminated at 5 °C. The effects of ATP depletion by iodoacetate and dinitrophenol to decrease 22Na efflux and to increase 22Na uptake, K loss, and swelling were reduced at 5 °C. Prior ATP depletion altered but did not prevent the marked reduction of efflux by cooling to 5 °C. Efflux of lithium, but not of potassium, was markedly slowed at 5 °C. K-free solutions still increased 22Na uptake at 5 °C. A model involving pinocytotic vesicles to explain these and earlier results was postulated.





1963 ◽  
Vol s3-104 (68) ◽  
pp. 505-512
Author(s):  
L. T. THREADGOLD

The cuticle of light microscopy is shown by electron microscopy to be a surface layer of protoplasm which is an extension of areas of nucleated protoplasm lying deep in the parenchyma. The cuticle therefore exists at two levels. The external level is syncytial, consisting of plateaux separated by branching valleys. This level contains apical pinocytotic vesicles, numerous mitochondria, endoplasmic membranes, large basal and other vacuoles, and dense spines. Tube-like evaginations from the base of the external level connect it to the individual areas of flask-shaped protoplasm which compose the internal level. Each of these areas of protoplasm contains a nucleus, great numbers of mitochondria, some vacuoles and diffuse inclusions, and the Golgi bodies. The histochemistry and function of the cuticle is discussed in the light of this new knowledge of cuticular ultrastructure, and a comparison is made between the cuticle of Cestoda and Trematoda.



1968 ◽  
Vol 3 (4) ◽  
pp. 467-474
Author(s):  
D. G. RAYNS ◽  
F. O. SIMPSON ◽  
W. S. BERTAUD

A general survey of guinea-pig myocardium was undertaken using the freeze-etch technique. Replicas of myocardial cell membranes were obtained. These showed an ordered array of pits or stumps situated at Z levels. The pits are interpreted as the apertures of the transverse tubules (T-tubules) seen from outside the cell, and the stumps as the remnants of the T-tubules remaining attached to the cell membrane after the cell contents have been removed. Pinocytotic vesicles were also present. T-tubules, mitochondria and myofilaments could be seen in replicas of the interior of myocardial cells. Capillary endothelial cells were seen from various aspects; pinocytotic vesicles were their most prominent feature. The appearances of the cell membrances in the present study suggest that the fracture plane tends to pass along either the outer or the inner surface of the membrane rather than of split the membrane.



1972 ◽  
Vol 20 (6) ◽  
pp. 445-462 ◽  
Author(s):  
SUSAN WINTER GERVIN ◽  
ERIC HOLTZMAN

Horseradish peroxidase injected intraperitoneally into newborn and young adult mice is subsequently found in the thymus within the lumina of blood vessels and in perivascular areas. In the newborns, much peroxidase is also detectable throughout the thymic parenchyma; it is present in extracellular spaces and in pinocytotic vesicles and lysosomes in thymocytes and other parenchymal cells. In young adult mice, very little peroxidase escapes from the vicinity of blood vessels; cells resembling macrophages contain most of the tracer present outside of blood vessels and only those thymocytes located very near small venules or capillaries are exposed to peroxidase. The results suggest that the "blood-thymic" barrier is not simply a static set of structures that prevents penetration of potential antigens from the blood stream into the parenchyma; in young adult animals, active uptake of foreign molecules by macrophages and other cells is an important component of the barrier. In addition, the findings may shed light on aspects of the development of the immunologic system, since it appears, for example, that potential antigens can interact directly with far more cells in the newborn thymus than is true in the adult.



1965 ◽  
Vol 26 (1) ◽  
pp. 99-123 ◽  
Author(s):  
Milton W. Brightman

From 10 minutes to 3½ hours after the intraventricular injection into rats of 15 to 100 mg of ferritin, an appreciable fraction of the protein, visualized electron microscopically, traverses the ependymal epithelium by diffusing along the dense intercellular substance of the luminal open junction and thence, by circumventing discrete intercellular fusions which partition rather than seal the interspace. These partitions shunt additional protein into the cell, where ferritin is transported within pinocytotic vesicles to the lateral and basal plasma-lemma and, presumably, back into the interspace again. The basal interspace is irregularly distended by pools of moderately dense "filler" within which ferritin accumulates. The larger fraction of protein enters the ependyma by pinocytosis and is eventually segregated within membrane-enclosed organelles such as vacuoles, multivesicular bodies, and dense bodies, where the molecules may assume a crystalline packing. As a result of the accumulation of ferritin within these inclusions and within filler substance, only a small amount of protein remains to enter the underlying parenchyma. Presentation of ferritin to prefixed cells leads to a random dispersion of free cytoplasmic ferritin. This artifactual distribution in both prefixed and postfixed cells is concurrent with disruption of cell membranes.



1988 ◽  
Vol 46 (1) ◽  
pp. 6-9
Author(s):  
Claudio A. Ferraz de Carvalho ◽  
Ciro F. da Silva

A freeze-fracture analysis of the satellite cells of spinal ganglia of the chick embryo was performed in 8 successive stages of development, from the 5th incubation day to hatching. The characteristic laminar disposition of the cells were first observed on the 7th day. Tight junctions were found at the 20th incubation day. Small groups or irregular aggregates of particles, but not gap junctions, were described on the 7th and 8th days. Pinocytotic vesicles were pointed out in the different stages considered.



1997 ◽  
Vol 106 (5) ◽  
pp. 394-398 ◽  
Author(s):  
Kensuke Watanabe ◽  
Yasuo Tanaka

Escherichia coli-derived endotoxin was inoculated in the middle ear of guinea pigs 24 hours after being injected intraperitoneally. Twenty-four hours after the middle ear inoculation, horseradish peroxidase (HRP) was injected via the femoral vein and the permeability of HRP through the capillaries of the stria vascularis and the destination of the leaked HRP were examined. A large amount of HRP leaked out of the capillary through the opened endothelial cell junctions and penetrated the enlarged intercellular spaces. Leaked HRP entered the pinocytotic vesicles of the intermediate cells. Even slightly degenerated intermediate cells retained this function. The HRP penetrated the spongelike structure of the marginal cells leading to the intercellular space. This structure was not observed without endotoxin. The HRP could not pass to the cochlear duct through the tight junctions between marginal cells. Blood sludging was observed in the strial capillaries. It appeared more frequently in the upper three turns than in the basal turn. The HRP leakage out of the capillaries was observed not only in the upper three turns but also in the basal turn.



Sign in / Sign up

Export Citation Format

Share Document