scholarly journals Dynamic, Long-Term In Vivo Imaging of Tumor-Stroma Interactions in Mouse Models of Breast Cancer Using Spinning-Disk Confocal Microscopy

2011 ◽  
Vol 2011 (2) ◽  
pp. pdb.top97-pdb.top97 ◽  
Author(s):  
A. J. Ewald ◽  
Z. Werb ◽  
M. Egeblad
2008 ◽  
pp. 357-375
Author(s):  
Kathleen Gabrielson ◽  
Teresa Southard ◽  
Yi Xu ◽  
Frank C. Marini ◽  
Brett M. Hall ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhuxin Wei ◽  
Guangxin Duan ◽  
Baoxing Huang ◽  
Shanshan Qiu ◽  
Dandan Zhou ◽  
...  

Abstract Background Fluorescence imaging as the beacon for optical navigation has wildly developed in preclinical studies due to its prominent advantages, including noninvasiveness and superior temporal resolution. However, the traditional optical methods based on ultraviolet (UV, 200–400 nm) and visible light (Vis, 400–650 nm) limited by their low penetration, signal-to-noise ratio, and high background auto-fluorescence interference. Therefore, the development of near-infrared-II (NIR-II 1000–1700 nm) nanoprobe attracted significant attentions toward in vivo imaging. Regrettably, most of the NIR-II fluorescence probes, especially for inorganic NPs, were hardly excreted from the reticuloendothelial system (RES), yielding the anonymous long-term circulatory safety issue. Results Here, we develop a facile strategy for the fabrication of Nd3+-doped rare-earth core–shell nanoparticles (Nd-RENPs), NaGdF4:5%Nd@NaLuF4, with strong emission in the NIR-II window. What’s more, the Nd-RENPs could be quickly eliminated from the hepatobiliary pathway, reducing the potential risk with the long-term retention in the RES. Further, the Nd-RENPs are successfully utilized for NIR-II in vivo imaging and magnetic resonance imaging (MRI) contrast agents, enabling the precise detection of breast cancer. Conclusions The rationally designed Nd-RENPs nanoprobes manifest rapid-clearance property revealing the potential application toward the noninvasive preoperative imaging of tumor lesions and real-time intra-operative supervision. Graphical abstract


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Liping Huang ◽  
Yiyi Zhang ◽  
Yanan Li ◽  
Fanling Meng ◽  
Hongyu Li ◽  
...  

AbstractThe highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients. Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising, yet greatly challenging, to reverse postoperative immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios, was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy. The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages (TAMs) and promote an immunogenic tumor microenvironment. The inner layer, loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.


2017 ◽  
Vol 51 (4) ◽  
pp. 1199-1208 ◽  
Author(s):  
Jing Guo ◽  
Jing Cai ◽  
Yunxia Zhang ◽  
Yapei Zhu ◽  
Ping Yang ◽  
...  

2011 ◽  
Vol 47 ◽  
pp. S19 ◽  
Author(s):  
S. Heskamp ◽  
O.C. Boerman ◽  
W.J.G. Oyen ◽  
J.D.M. Molkenboer-Kuenen ◽  
W.T.A. van der Graaf ◽  
...  

Author(s):  
Angelos A. Skodras ◽  
Jasmin K. Hefendehl ◽  
Jonas J. Neher

2005 ◽  
Vol 171 (4) ◽  
pp. 729-738 ◽  
Author(s):  
Kan Ding ◽  
Martha Lopez-Burks ◽  
José Antonio Sánchez-Duran ◽  
Murray Korc ◽  
Arthur D. Lander

The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican independent, whereas those that trigger syndecan-1 shedding make initial FGF2 responses glypican dependent. We further show that syndecan-1 shedding is mediated by matrix metalloproteinase-7 (MMP7), which, being anchored to cells by HSPGs, also causes its own release in a complex with syndecan-1 ectodomains. These results support a specific role for shed syndecan-1 or MMP7–syndecan-1 complexes in tumor progression and add to accumulating evidence that syndecans and glypicans have nonequivalent functions in vivo.


Sign in / Sign up

Export Citation Format

Share Document