Recombination Kinetics and Electroluminescence from Deep Levels in the Carrier Diffusion Region of ap−nJunction

1966 ◽  
Vol 149 (2) ◽  
pp. 574-579 ◽  
Author(s):  
D. F. Nelson
Author(s):  
D.P. Malta ◽  
M.L. Timmons

Measurement of the minority carrier diffusion length (L) can be performed by measurement of the rate of decay of excess minority carriers with the distance (x) of an electron beam excitation source from a p-n junction or Schottky barrier junction perpendicular to the surface in an SEM. In an ideal case, the decay is exponential according to the equation, I = Ioexp(−x/L), where I is the current measured at x and Io is the maximum current measured at x=0. L can be obtained from the slope of the straight line when plotted on a semi-logarithmic scale. In reality, carriers recombine not only in the bulk but at the surface as well. The result is a non-exponential decay or a sublinear semi-logarithmic plot. The effective diffusion length (Leff) measured is shorter than the actual value. Some improvement in accuracy can be obtained by increasing the beam-energy, thereby increasing the penetration depth and reducing the percentage of carriers reaching the surface. For materials known to have a high surface recombination velocity s (cm/sec) such as GaAs and its alloys, increasing the beam energy is insufficient. Furthermore, one may find an upper limit on beam energy as the diameter of the signal generation volume approaches the device dimensions.


2019 ◽  
Author(s):  
Ilka M. Hermes ◽  
Andreas Best ◽  
Julian Mars ◽  
Sarah M. Vorpahl ◽  
Markus Mezger ◽  
...  

Author(s):  
Nataliya Mitina ◽  
Vladimir Krylov

The results of an experiment to determine the activation energy of a deep level in a gallium arsenide mesastructure, obtained by the method of capacitive deep levels transient spectroscopy with data processing according to the Oreshkin model and Lang model, are considered.


Author(s):  
Aleksey Bogachev ◽  
Vladimir Krylov

The results of an experiment to determine the activation energy of a deep level in a gallium arsenide mesastructure by capacitive relaxation spectroscopy of deep levels at various values of the blocking voltage are considered.


1981 ◽  
Vol 46 (11) ◽  
pp. 2669-2675 ◽  
Author(s):  
Ivo Paseka

Hydrogenation of nitrogen oxide in acid solutions on Pt-C catalysts proceeds in dependence on experimental conditions either in purely diffusion region or in the diffusion and kinetically controlled region. The boundary between these two processes shifts to the higher ratio of NO to H2 partial pressures with increasing platinum content and decreasing intensity of agitation.


1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


Sign in / Sign up

Export Citation Format

Share Document