Emission rate of a multilevel atom and its quantum beats

1976 ◽  
Vol 14 (6) ◽  
pp. 2174-2181 ◽  
Author(s):  
I. C. Khoo ◽  
J. H. Eberly
1979 ◽  
Vol 40 (C1) ◽  
pp. C1-335-C1-337 ◽  
Author(s):  
J. Carmeliet ◽  
J. C. Dehaes ◽  
W. Singer

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1201
Author(s):  
Dan Dalacu ◽  
Philip J. Poole ◽  
Robin L. Williams

For nanowire-based sources of non-classical light, the rate at which photons are generated and the ability to efficiently collect them are determined by the nanowire geometry. Using selective-area vapour-liquid-solid epitaxy, we show how it is possible to control the nanowire geometry and tailor it to optimise device performance. High efficiency single photon generation with negligible multi-photon emission is demonstrated using a quantum dot embedded in a nanowire having a geometry tailored to optimise both collection efficiency and emission rate.


Author(s):  
Roberto A. Sussman ◽  
Eliana Golberstein ◽  
Riccardo Polosa

We discuss the implications of possible contagion of COVID-19 through e-cigarette aerosol (ECA) for prevention and mitigation strategies during the current pandemic. This is a relevant issue when millions of vapers (and smokers) must remain under indoor confinement and/or share public outdoor spaces with non-users. The fact that the respiratory flow associated with vaping is visible (as opposed to other respiratory activities) clearly delineates a safety distance of 1–2 m along the exhaled jet to prevent direct exposure. Vaping is a relatively infrequent and intermittent respiratory activity for which we infer a mean emission rate of 79.82 droplets per puff (6–200, standard deviation 74.66) comparable to mouth breathing, it adds into shared indoor spaces (home and restaurant scenarios) a 1% extra risk of indirect COVID-19 contagion with respect to a “control case” of existing unavoidable risk from continuous breathing. As a comparative reference, this added relative risk increases to 44–176% for speaking 6–24 min per hour and 260% for coughing every 2 min. Mechanical ventilation decreases absolute emission levels but keeps the same relative risks. As long as direct exposure to the visible exhaled jet is avoided, wearing of face masks effectively protects bystanders and keeps risk estimates very low. As a consequence, protection from possible COVID-19 contagion through vaping emissions does not require extra interventions besides the standard recommendations to the general population: keeping a social separation distance of 2 m and wearing of face masks.


2021 ◽  
Vol 13 (5) ◽  
pp. 935
Author(s):  
Matthew Varnam ◽  
Mike Burton ◽  
Ben Esse ◽  
Giuseppe Salerno ◽  
Ryunosuke Kazahaya ◽  
...  

SO2 cameras are able to measure rapid changes in volcanic emission rate but require accurate calibrations and corrections to convert optical depth images into slant column densities. We conducted a test at Masaya volcano of two SO2 camera calibration approaches, calibration cells and co-located spectrometer, and corrected both calibrations for light dilution, a process caused by light scattering between the plume and camera. We demonstrate an advancement on the image-based correction that allows the retrieval of the scattering efficiency across a 2D area of an SO2 camera image. When appropriately corrected for the dilution, we show that our two calibration approaches produce final calculated emission rates that agree with simultaneously measured traverse flux data and each other but highlight that the observed distribution of gas within the image is different. We demonstrate that traverses and SO2 camera techniques, when used together, generate better plume speed estimates for traverses and improved knowledge of wind direction for the camera, producing more reliable emission rates. We suggest combining traverses and the SO2 camera should be adopted where possible.


2021 ◽  
Vol 103 (22) ◽  
Author(s):  
I. N. Moskalenko ◽  
I. S. Besedin ◽  
S. S. Seidov ◽  
M. V. Fistul ◽  
A. V. Ustinov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document