One-body potential theory in terms of the phase of wave functions for the ground state of the Be atom

1989 ◽  
Vol 39 (11) ◽  
pp. 5512-5514 ◽  
Author(s):  
A. Nagy ◽  
N. H. March
Author(s):  
Søren Fournais ◽  
Thomas Østergaard Sørensen

Abstract We prove a priori bounds for all derivatives of non-relativistic Coulombic eigenfunctions ψ, involving negative powers of the distance to the singularities of the many-body potential. We use these to derive bounds for all derivatives of the corresponding one-electron densities ρ, involving negative powers of the distance from the nuclei. The results are both natural and optimal, as seen from the ground state of Hydrogen.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Sotaro Sugishita

Abstract We consider entanglement of first-quantized identical particles by adopting an algebraic approach. In particular, we investigate fermions whose wave functions are given by the Slater determinants, as for singlet sectors of one-matrix models. We show that the upper bounds of the general Rényi entropies are N log 2 for N particles or an N × N matrix. We compute the target space entanglement entropy and the mutual information in a free one-matrix model. We confirm the area law: the single-interval entropy for the ground state scales as $$ \frac{1}{3} $$ 1 3 log N in the large N model. We obtain an analytical $$ \mathcal{O}\left({N}^0\right) $$ O N 0 expression of the mutual information for two intervals in the large N expansion.


2018 ◽  
Vol 181 ◽  
pp. 01013 ◽  
Author(s):  
Reinhard Alkofer ◽  
Christian S. Fischer ◽  
Hèlios Sanchis-Alepuz

The covariant Faddeev approach which describes baryons as relativistic three-quark bound states and is based on the Dyson-Schwinger and Bethe-Salpeter equations of QCD is briefly reviewed. All elements, including especially the baryons’ three-body-wave-functions, the quark propagators and the dressed quark-photon vertex, are calculated from a well-established approximation for the quark-gluon interaction. Selected previous results of this approach for the spectrum and elastic electromagnetic form factors of ground-state baryons and resonances are reported. The main focus of this talk is a presentation and discussion of results from a recent investigation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only Σ0 to Λ transition.


The r. m. s. radius and the binding energy of oxygen 16 are calculated for several different internueleon potentials. These potentials all fit the low-energy data for two nucleons, they have hard cores of differing radii, and they include the Gammel-Thaler potential (core radius 0·4 fermi). The calculated r. m. s. radii range from 1·5 f for a potential with core radius 0·2 f to 2·0 f for a core radius 0·6 f. The value obtained from electron scattering experiments is 2·65 f. The calculated binding energies range from 256 MeV for a core radius 0·2 f to 118 MeV for core 0·5 f. The experimental value of binding energy is 127·3 MeV. The 25% discrepancy in the calculated r. m. s. radius may be due to the limitations of harmonic oscillator wave functions used in the unperturbed system.


1955 ◽  
Vol 33 (11) ◽  
pp. 668-678 ◽  
Author(s):  
F. R. Britton ◽  
D. T. W. Bean

Long range forces between two hydrogen molecules are calculated by using methods developed by Massey and Buckingham. Several terms omitted by them and a corrected numerical factor greatly change results for the van der Waals energy but do not affect their results for the static quadrupole–quadrupole energy. By using seven approximate ground state H2 wave functions information is obtained regarding the dependence of the van der Waals energy on the choice of wave function. The value of this energy averaged over all orientations of the molecular axes is found to be approximately −11.0 R−6 atomic units, a result in close agreement with semiempirical values.


2021 ◽  
Vol 13 (3) ◽  
pp. 733-744
Author(s):  
P. K. DEBNATH

The zero-temperature ground state properties of experimental 87Rb condensate are studied in a harmonic plus quartic trap [ V(r) =  ½mω2r2 + λr4 ]. The anharmonic parameter (λ) is slowly tuned from harmonic to anharmonic. For each choice of λ, the many-particle Schrödinger equation is solved using the potential harmonic expansion method and determines the lowest effective many-body potential. We utilize the correlated two-body basis function, which keeps all possible two-body correlations. The use of van der Waals interaction gives realistic pictures. We calculate kinetic energy, trapping potential energy, interaction energy, and total ground state energy of the condensate in this confining potential, modelled experimentally. The motivation of the present study is to investigate the crucial dependency of the properties of an interacting quantum many-body system on λ. The average size of the condensate has also been calculated to observe how the stability of repulsive condensate depends on anharmonicity. In particular, our calculation presents a clear physical picture of the repulsive condensate in an anharmonic trap.


Sign in / Sign up

Export Citation Format

Share Document