scholarly journals Convertibility between two-qubit states using stochastic local quantum operations assisted by classical communication

2008 ◽  
Vol 77 (1) ◽  
Author(s):  
Yeong-Cherng Liang ◽  
Lluís Masanes ◽  
Andrew C. Doherty
Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 147
Author(s):  
Chuanmei Xie ◽  
Zhanjun Zhang ◽  
Jianlan Chen ◽  
Xiaofeng Yin

In this paper, quantum discords in a special kind of states, i.e., Werner states by local quantum operations and classical communication (LQCC) protocols (WLQCC states), are studied. Nineteen parameters to quantify the quantum discords are reduced to four parameters in terms of properties of Werner states and quantum discord. In the case of orthogonal projective measures, analytic expression of quantum discords in WLQCC states is analytically worked out. Some properties of the quantum discord in the WLQCC states are obtained, especially the variation relations between the quantum discords and the parameters characterizing the WLQCC states. By virtue of numerical computations, quantum discords in a Werner state before and after LQCC protocols are compared. It is found that quantum discord in any WLQCC state cannot exceed that in the original Werner state.


2021 ◽  
Vol 11 (20) ◽  
pp. 9542
Author(s):  
David W. Kribs ◽  
Comfort Mintah ◽  
Michael Nathanson ◽  
Rajesh Pereira

We bring together in one place some of the main results and applications from our recent work on quantum information theory, in which we have brought techniques from operator theory, operator algebras, and graph theory for the first time to investigate the topic of distinguishability of sets of quantum states in quantum communication, with particular reference to the framework of one-way local quantum operations and classical communication (LOCC). We also derive a new graph-theoretic description of distinguishability in the case of a single-qubit sender.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Castro-Ruiz ◽  
Flaminia Giacomini ◽  
Alessio Belenchia ◽  
Časlav Brukner

AbstractThe standard formulation of quantum theory relies on a fixed space-time metric determining the localisation and causal order of events. In general relativity, the metric is influenced by matter, and is expected to become indefinite when matter behaves quantum mechanically. Here, we develop a framework to operationally define events and their localisation with respect to a quantum clock reference frame, also in the presence of gravitating quantum systems. We find that, when clocks interact gravitationally, the time localisability of events becomes relative, depending on the reference frame. This relativity is a signature of an indefinite metric, where events can occur in an indefinite causal order. Even if the metric is indefinite, for any event we can find a reference frame where local quantum operations take their standard unitary dilation form. This form is preserved when changing clock reference frames, yielding physics covariant with respect to quantum reference frame transformations.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850218 ◽  
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the behavior of quantum correlations in some specific Werner-like two-qubit states, where the qubit interacts individually with non-Markovian environment. We employ the local quantum uncertainty and trace distance discord to quantify the amount of quantum correlations between the evolved qubits and the corresponding analytical expressions are derived. For specific values of the parameters characterizing the whole system, the dynamics of quantum correlations exhibits collapse and revival phenomena. The influence of the non-Markovianity is also investigated to analyze the monotonic decay of quantum correlations in the limiting case of Markovian regime. Furthermore, we show that trace distance discord captures quantum correlations that cannot be revealed by local quantum uncertainty in some particular situations.


2019 ◽  
Vol 10 ◽  
pp. 1548-1558
Author(s):  
Daria V Popolitova ◽  
Nikolay V Klenov ◽  
Igor I Soloviev ◽  
Sergey V Bakurskiy ◽  
Olga V Tikhonova

A theoretical approach to the consistent full quantum description of the ultrafast population transfer and magnetization reversal in superconducting meta-atoms induced by picosecond unipolar pulses of a magnetic field is developed. A promising scheme based on the regime of stimulated Raman Λ-type transitions between qubit states via upper-lying levels is suggested in order to provide ultrafast quantum operations on the picosecond time scale. The experimental realization of a circuit-on-chip for the discussed ultrafast control is presented.


2014 ◽  
Vol 12 (03) ◽  
pp. 1450011 ◽  
Author(s):  
Pengfei Xing ◽  
Yimin Liu ◽  
Chuanmei Xie ◽  
Xiansong Liu ◽  
Zhanjun Zhang

Two three-party schemes are put forward for sharing quantum operations on a remote qutrit with local operation and classical communication as well as shared entanglements. The first scheme uses a two-qutrit and three-qutrit non-maximally entangled states as quantum channels, while the second replaces the three-qutrit non-maximally entangled state with a two-qutrit. Both schemes are treated and compared from the four aspects of quantum and classical resource consumption, necessary-operation complexity, success probability and efficiency. It is found that the latter is overall more optimal than the former as far as a restricted set of operations is concerned. In addition, comparisons of both schemes with other four relevant ones are also made to show their two features, including degree generalization and channel-state generalization. Furthermore, some concrete discussions on both schemes are made to expose their important features of security, symmetry and experimental feasibility. Particularly, it is revealed that the success probabilities and intrinsic efficiencies in both schemes are completely determined by the shared entanglement.


Author(s):  
James R. Seddon ◽  
Earl T. Campbell

The development of a framework for quantifying ‘non-stabilizerness’ of quantum operations is motivated by the magic state model of fault-tolerant quantum computation and by the need to estimate classical simulation cost for noisy intermediate-scale quantum (NISQ) devices. The robustness of magic was recently proposed as a well-behaved magic monotone for multi-qubit states and quantifies the simulation overhead of circuits composed of Clifford +  T gates, or circuits using other gates from the Clifford hierarchy. Here we present a general theory of the ‘non-stabilizerness’ of quantum operations rather than states, which are useful for classical simulation of more general circuits. We introduce two magic monotones, called channel robustness and magic capacity, which are well-defined for general n -qubit channels and treat all stabilizer-preserving CPTP maps as free operations. We present two complementary Monte Carlo-type classical simulation algorithms with sample complexity given by these quantities and provide examples of channels where the complexity of our algorithms is exponentially better than previously known simulators. We present additional techniques that ease the difficulty of calculating our monotones for special classes of channels.


Sign in / Sign up

Export Citation Format

Share Document