Theoretical study of grain boundaries in Si: Effects of structural disorder on the local electronic structure and the origin of band tails

1994 ◽  
Vol 50 (12) ◽  
pp. 8502-8522 ◽  
Author(s):  
Masanori Kohyama ◽  
Ryoichi Yamamoto
Author(s):  
S.J. Splinter ◽  
J. Bruley ◽  
P.E. Batson ◽  
D.A. Smith ◽  
R. Rosenberg

It has long been known that the addition of Cu to Al interconnects improves the resistance to electromigration failure. It is generally accepted that this improvement is the result of Cu segregation to Al grain boundaries. The exact mechanism by which segregated Cu increases service lifetime is not understood, although it has been suggested that the formation of thin layers of θ-CuA12 (or some metastable substoichiometric precursor, θ’ or θ”) at the boundaries may be necessary. This paper reports measurements of the local electronic structure of Cu atoms segregated to Al grain boundaries using spatially resolved EELS in a UHV STEM. It is shown that segregated Cu exists in a chemical environment similar to that of Cu atoms in bulk θ-phase precipitates.Films of 100 nm thickness and nominal composition Al-2.5wt%Cu were deposited by sputtering from alloy targets onto NaCl substrates. The samples were solution heat treated at 748K for 30 min and aged at 523K for 4 h to promote equilibrium grain boundary segregation. EELS measurements were made using a Gatan 666 PEELS spectrometer interfaced to a VG HB501 STEM operating at 100 keV. The probe size was estimated to be 1 nm FWHM. Grain boundaries with the narrowest projected width were chosen for analysis. EDX measurements of Cu segregation were made using a VG HB603 STEM.


1997 ◽  
Vol 282-287 ◽  
pp. 1639-1640 ◽  
Author(s):  
H.U. Suter ◽  
E.P. Stoll ◽  
P. Hüsser ◽  
S. Schafroth ◽  
P.F. Meier

2001 ◽  
Vol 7 (S2) ◽  
pp. 194-195
Author(s):  
David A. Muller

There is an intimate connection between the electronic structure of a material and its physical properties. to change one, is to change the other. Some of the most striking illustrations of this relationship can be found at grain boundaries in metals and their alloys. Here, the most important changes in cohesion can be described by changes in the local density of states (LDOS), which in turn can be measured using EELS [1]. The first demonstration that EELS could be used to connect the electronic and mechanical properties of a material was in revealing the role that boron has in restoring a bulk-like bonding to grain boundaries in Ni3Al [2,3]. Boron was known to change the fracture mode in Ni3Al from intergranular to transgranular, possibly by enhancing grain boundary cohesion.What interested me in this project, when John Silcox first suggested it as a thesis topic, was the potential of using the EELS fine structure to measure materials properties directly.


2002 ◽  
Vol 727 ◽  
Author(s):  
Alexander Kvit ◽  
Gerd Duscher ◽  
Chunming Jin ◽  
Jagdish Narayan

AbstractThe structure and chemistry of interfaces and grain boundaries are known to influence the optical and electrical properties of wide-band gap semiconductors structures. ZnO/AlN/Si(100) heterostructures grown by laser deposition were studied by conventional and high-resolution transmission electron microscopy (HRTEM). The local electronic structure of ZnO grain boundaries was investigated by high resolution Z-contrast imaging using scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy in a scanning mode. Zcontrast imaging and EELS were performed simultaneously enabling direct correlations between interface chemistry and local structure to be made. ZnO grain boundaries are composed of a periodic array of a basic structural unit. On the basis of the electron energy-loss near-edge structure (ELNES) of zinc and oxygen edges associated with the ZnO- grain boundaries, the corresponding electronic spectrum was discussed.


2020 ◽  
Vol 10 (18) ◽  
pp. 6266-6273
Author(s):  
Yalan Zhang ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jung Huang ◽  
Yanping Hou ◽  
...  

Excellent electrochemical water splitting with remarkable durability can provide a solution to satisfy the increasing global energy demand in which the electrode materials play an important role.


MRS Bulletin ◽  
1998 ◽  
Vol 23 (9) ◽  
pp. 36-41 ◽  
Author(s):  
P. Keblinski ◽  
D. Wolf ◽  
F. Cleri ◽  
S.R. Phillpot ◽  
H. Gleiter

The low-pressure synthesis of rather pure nanocrystalline diamond films from fullerene precursors suggests that for a small enough grain size the diamond structure may be energetically preferred over graphite. Because of the small grain size of typically about 15 nm in these films, a significant fraction of the carbon atoms is situated in the grain boundaries (GBs). The surprisingly high wear resistance of these films even after the substrate is removed and their high corrosion resistance suggest that the grains are strongly bonded. Grain-boundary carbon is also believed to be responsible for the absorption and scattering of light in these films, for their electrical conductivity, and for their electron-emission properties. In spite of all these indications of a critical role played by GB carbon in achieving the remarkable properties of nanocrystalline diamond films, to date the atomic structures of the GBs are essentially not known.It is well-known that the electronic and optical properties of polycrystalline silicon films are significantly affected by the presence of GBs. For example GBs can provide active sites for the recombination of electron-hole pairs in photovoltaic applications. Also, in electronic devices such as thin-film transistors, GBs are known to play an important role. Because of silicon's strong energetic preference for sp3 hybridization over other electronic configurations, the structural disorder in silicon GBs is accommodated by a distortion of the tetrahedral nearestneighbor bonds and in the extreme by the creation of dangling bonds—that is, of three-coordinated Si atoms each having one unsaturated, bound electron in an otherwise more or less tetrahedrally coordinated environment.


Sign in / Sign up

Export Citation Format

Share Document