Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates

1996 ◽  
Vol 54 (20) ◽  
pp. 14754-14757 ◽  
Author(s):  
Gao-xiang Ye ◽  
Qi-rui Zhang ◽  
Chun-mu Feng ◽  
Hong-liang Ge ◽  
Zheng-kuan Jiao
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Y. B. Xu ◽  
Y. L. Tang ◽  
Y. L. Zhu ◽  
Y. Liu ◽  
S. Li ◽  
...  

1988 ◽  
Vol 119 ◽  
Author(s):  
Hung-Yu Liu ◽  
Peng-Heng Chang ◽  
Jim Bohlman ◽  
Hun-Lian Tsai

AbstractThe interaction of Al and W in the Si/SiO2/W-Ti/Al thin film system is studied quantitatively by glancing angle x-ray diffraction. The formation of Al-W compounds due to annealing is monitored by the variation of the integrated intensity from a few x-ray diffraction peaks of the corresponding compounds. The annealing was conducted at 400°C, 450°C and 500°C from 1 hour to 300 hours. The kinetics of compound formation is determined using x-ray diffraction data and verified by TEM observations. We will also show the correlation of the compound formation to the change of the electrical properties of these films.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MC06
Author(s):  
Seunghyun Kim ◽  
Yong-Jin Park ◽  
Young-Chang Joo ◽  
Young-Bae Park

2015 ◽  
Vol 1734 ◽  
Author(s):  
Kento Nakanishi ◽  
Jun Otsuka ◽  
Masanori Hiratsuka ◽  
Chen Chung Du ◽  
Akira Shirakura ◽  
...  

ABSTRACTDiamond-like carbon (DLC) has widespread attention as a new material for its application to thin film solar cells and other semiconducting devices. DLC can be produced at a lower cost than amorphous silicon, which is utilized for solar cells today. However, the electrical properties of DLC are insufficient for this purpose because of many dangling bonds in DLC. To solve this problem, we investigated the effects of the fluorine incorporation on the structural and electrical properties of DLC.We prepared five kinds of fluorinated DLC (F-DLC) thin film with different amounts of fluorine. Films were deposited by the radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. C6H6 and C6HF5 were used as source gases. The total gas flow rate was constant and the gas flow rate ratio R (=C6H6 / (C6H6 + C6HF5)) was changed from 0 to 1 in 0.25 ratio steps. We also prepared nitrogen doped DLC (F-DLC) on p-Si using N2 gas as a doping gas to form nitrogen doped DLC (F-DLC) / p-Si heterojunction diodes.X-ray photoelectron spectroscopy (XPS) showed that fluorine concentration in the DLC films was controlled. Moreover, the XPS analysis of the C1s spectrum at R=2/4 showed the presence of CF bonding. At R=1, CF2 bonding was observed in addition to CF bonding. The sheet resistivity of the films changed from 3.07×1012 to 4.86×109 Ω. The minimum value was obtained at R=2/4. The current-voltage characteristics indicated that nitrogen doped F-DLC of 2/4 and p-Si heterojunction diode exhibited the best rectification characteristics and its energy conversion efficiency had been maximized. This is because of a decrease of dangling bonds density by ESR analysis and an increase of sp2 structures by Raman analysis. When the fluorine is over certain content, the sheet resistivity increases because chain structures become larger, which is due to the CF2 bonding in F-DLC prevents ring structures. Many C2F4 species were observed and it may become precursors of the chain structure domains, such as (CF2)n.In this study, we revealed effects of fluorine incorporation on DLC and succeeded in increasing its conductivity and improving rectification characteristics of DLC/ p-Si hetero-junction diodes. Our results indicate that DLC fluorination is effective for the semiconducting material, such as solar cell applications.


2015 ◽  
Vol 589 ◽  
pp. 173-181 ◽  
Author(s):  
A. Tynkova ◽  
G.L. Katona ◽  
G. Erdélyi ◽  
L. Daróczi ◽  
А.I. Oleshkevych ◽  
...  

2018 ◽  
Vol 33 (22) ◽  
pp. 3880-3889 ◽  
Author(s):  
Mohd. Shkir ◽  
Mohd. Arif ◽  
Vanga Ganesh ◽  
Mohamed A. Manthrammel ◽  
Arun Singh ◽  
...  

Abstract


Author(s):  
Yu.N. Makogon ◽  
O.P. Pavlova ◽  
G. Beddies ◽  
A.V. Mogilatenko ◽  
O.V. Chukhrai

Sign in / Sign up

Export Citation Format

Share Document