scholarly journals First-principles calculations for the adsorption of water molecules on theCu(100)surface

2004 ◽  
Vol 70 (20) ◽  
Author(s):  
Sanwu Wang ◽  
Yanzhao Cao ◽  
P. A. Rikvold
Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1596
Author(s):  
Luca Valentini ◽  
Silvia Bittolo Bon ◽  
Giacomo Giorgi

From the global spread of COVID-19 we learned that SARS-CoV-2 virus can be transmitted via respiratory liquid droplets. In this study, we performed first-principles calculations suggesting that water molecules once in contact with the graphene oxide (GO) layer interact with its functional groups, therefore, developing an electric field induced by the heterostructure formation. Experiments on GO polymer composite film supports the theoretical findings, showing that the interaction with water aerosol generates a voltage output signal of up to −2 V. We then developed an electrostatic composite fiber by the coagulation method mixing GO with poly(methyl methacrylate) (PMMA). These findings could be used to design protective fabrics with antiviral activity against negatively charged spike proteins of airborne viruses.


2017 ◽  
Vol 19 (45) ◽  
pp. 30740-30748 ◽  
Author(s):  
M. A. Belyanchikov ◽  
E. S. Zhukova ◽  
S. Tretiak ◽  
A. Zhugayevych ◽  
M. Dressel ◽  
...  

Using the DFT approach and optical spectroscopy, we provide a comprehensive analysis of IR excitation of water molecules confined in beryl nanopores.


2002 ◽  
Vol 751 ◽  
Author(s):  
M. Oshikiri ◽  
M. Boero ◽  
J. Ye

ABSTRACTThe adsorption process of water molecules on the surface of InVO4 has been investigated via first principles molecular dynamics simulations and compared with that of the well-known rutile TiO2. We have found that the surface of InVO4 shows a remarked chemical reactivity whenever comes in contact with water and H2O molecules are often adsorbed dissociatively on its surface. The reaction proceeds spontaneously in a way similar to the case of TiO2 and does not require the overcoming of an activation energy barrier. The peculiar atomic connectivity of the InVO4 bulk crystal structure and the changes at the catalyst surface induced by the water adsorption are discussed and compared with the TiO2 system.


2011 ◽  
Vol 480-481 ◽  
pp. 132-136 ◽  
Author(s):  
Jian Wei Wei ◽  
Hui Zeng ◽  
Li Chun Pu ◽  
Nan Hu

In this paper, we have investigated the geometries and electronic structures of B-N co-doped carbon nanotube with inside adsorption of water molecules. The charge distributions, band structures and local density of states are calculated by using the first-principles theory in detail. The results show that the water molecules can adsorb stably on the inside surface of the doped nanotube with slight deformation. The π and π* subbands shift upward depending on the sites of the adoptions. The investigations will be beneficial to the biological application of B-N co-doped nanotube.


2020 ◽  
Vol 6 (39) ◽  
pp. eabb6011
Author(s):  
Fabrizia Foglia ◽  
Adam J. Clancy ◽  
Jasper Berry-Gair ◽  
Karolina Lisowska ◽  
Martin C. Wilding ◽  
...  

Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes.


Sign in / Sign up

Export Citation Format

Share Document