Adosorption of H2O on the Inside Surface of B-N Co-Doped Carbon Nanotube

2011 ◽  
Vol 480-481 ◽  
pp. 132-136 ◽  
Author(s):  
Jian Wei Wei ◽  
Hui Zeng ◽  
Li Chun Pu ◽  
Nan Hu

In this paper, we have investigated the geometries and electronic structures of B-N co-doped carbon nanotube with inside adsorption of water molecules. The charge distributions, band structures and local density of states are calculated by using the first-principles theory in detail. The results show that the water molecules can adsorb stably on the inside surface of the doped nanotube with slight deformation. The π and π* subbands shift upward depending on the sites of the adoptions. The investigations will be beneficial to the biological application of B-N co-doped nanotube.

2012 ◽  
Vol 535-537 ◽  
pp. 61-66
Author(s):  
Hao He ◽  
Chao Yuan ◽  
Er Jun Liang ◽  
Shun Fang Li

Field emission property of Ga-doped carbon nanotube (CNT) film has been studied and compared with those of un-doped, N-doped as well as B and N co-doped CNT films. It is found that the Ga-doped CNT film exhibits superior field emission property to the other films. The turn-on field for Ga-doped CNT film is well below 1.0 V/μm, lower than those for un-doped (2.22 V/μm), N-doped (1.1 V/μm), B and N co-doped (4.4 V/μm) CNT films. Its current density reaches 5000 μA/cm2at 2.6 V/μm which is well above those for un-doped (1400 μA/cm2), N-doped (3000 μA/cm2) as well as B and N co-doped (2) CNT films at applied electric field of 5.7 V/μm. First principles calculations were carried out to obtain the binding energy and electronic nature altering of a CNT by Ga doping. It is shown that Ga-doped CNT (8,0) alters from semiconductor to intrinsic metal and a binding energy of 2.7527 eV is obtained. The field emission property can not simply be explained by the defect concentration, but can be understood by significant altering in the local density of states near the Fermi level introduced by dopants.


2016 ◽  
Vol 21 (3) ◽  
pp. 599-605 ◽  
Author(s):  
Wei Su ◽  
Rui Zhao ◽  
Shukai Zheng

Vacuum ◽  
2020 ◽  
Vol 172 ◽  
pp. 109091
Author(s):  
Long Lin ◽  
Jingtao Huang ◽  
Weiyang Yu ◽  
Hualong Tao ◽  
Linghao Zhu ◽  
...  

2017 ◽  
Vol 31 (29) ◽  
pp. 1750217 ◽  
Author(s):  
Zhi Li ◽  
Dan-Dan Xu ◽  
Shu-Yu Ning ◽  
Haibin Su ◽  
Toshiaki Iitaka ◽  
...  

Motivated by the chiral anomaly steering negative longitudinal magnetoresistance in GdBiPt under external magnetic field, we studied the electronic structures of GdBi with paramagnetism, antiferromagnetism and ferromagnetism by first-principles calculations with modified Becke and Johnson local density approximation plus Hubbard [Formula: see text]. Our calculated results reveal that paramagnetic GdBi is semiconducting, while the antiferromagnetic GdBi is a topological nontrivial compensation metal. We also predict the presence of a pair of Weyl fermions in ferromagnetic GdBi and GdSb. The band crossing along the direction of magnetization is protected by the fourfold rotation symmetry, and the topological charge associating with each [Formula: see text] band crossing point is [Formula: see text].


2005 ◽  
Vol 900 ◽  
Author(s):  
Shelly L. Elizondo ◽  
John W. Mintmire

ABSTRACTWe investigate the electronic structures of extended helical silver single-wall nanotubes (AgSWNTs). Because these helical nanotubes are essentially comprised of n-atom strands winding about the nanotube's axis, we systematically examine, strand by strand, the electronic properties and the number of conduction channels associated with these structures. Herein, we study a special case of high-symmetry nanotubes. Nanotubes with sufficiently large radii were also calculated with a silver atomic chain inserted along the nanotube's axis. The analysis is carried out within a first-principles, all-electron self-consistent local density functional approach (LDF) adapted for helical symmetry. Modeling helical silver (or gold) single-wall nanotubes entails rolling up a sheet of atoms and mapping the atoms onto the surface of a cylinder, comparable to rolling up a graphite sheet for a carbon nanotube. It is well known that controlling the size and shape of silver and gold nanostructures results in the ability to tailor the optical and catalytic properties of these materials. In this preliminary study, we consider changes in the electronic structures of these materials as each nanotube is built strand by strand.


2002 ◽  
Vol 751 ◽  
Author(s):  
M. Oshikiri ◽  
M. Boero ◽  
J. Ye

ABSTRACTThe adsorption process of water molecules on the surface of InVO4 has been investigated via first principles molecular dynamics simulations and compared with that of the well-known rutile TiO2. We have found that the surface of InVO4 shows a remarked chemical reactivity whenever comes in contact with water and H2O molecules are often adsorbed dissociatively on its surface. The reaction proceeds spontaneously in a way similar to the case of TiO2 and does not require the overcoming of an activation energy barrier. The peculiar atomic connectivity of the InVO4 bulk crystal structure and the changes at the catalyst surface induced by the water adsorption are discussed and compared with the TiO2 system.


2008 ◽  
Vol 07 (04) ◽  
pp. 793-803
Author(s):  
NUANXIANG LI ◽  
QUNXIANG LI ◽  
HAIBIN SU ◽  
Q. W. SHI ◽  
JINLONG YANG

First-principles studies on electronic structures, transverse polarizability, and shielding of two coaxial hybrid double-walled nanotubes consisting of carbon nanotube (CNT) and boron nitride nanotube (BNNT), namely CNT@BNNT and BNNT@CNT, are conducted. The interaction between inner and outer tubes is considerably weak. The polarizability of single-walled CNT is larger than that of single-walled BNNT due to the different electronic properties. In BNNT@CNT, the outer CNT with delocalized π-electrons character demonstrates a nearly complete shielding with the order of 90% of the inner BNNT from the transverse external electric field, while the outer BNNT has a relative small shielding of about 40% for the inner CNT in CNT@BNNT system. Moreover, the shielding of the outer tube can be appreciably enhanced by increasing the intertube separation.


2013 ◽  
Vol 62 (5) ◽  
pp. 056105
Author(s):  
Wang Ping ◽  
Guo Li-Xin ◽  
Yang Yin-Tang ◽  
Zhang Zhi-Yong

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yong-Jie Hu ◽  
Ge Zhao ◽  
Baiyu Zhang ◽  
Chaoming Yang ◽  
Mingfei Zhang ◽  
...  

Abstract The interactions between solute atoms and crystalline defects such as vacancies, dislocations, and grain boundaries are essential in determining alloy properties. Here we present a general linear correlation between two descriptors of local electronic structures and the solute-defect interaction energies in binary alloys of body-centered-cubic (bcc) refractory metals (such as W and Ta) with transition-metal substitutional solutes. One electronic descriptor is the bimodality of the d-orbital local density of states for a matrix atom at the substitutional site, and the other is related to the hybridization strength between the valance sp- and d-bands for the same matrix atom. For a particular pair of solute-matrix elements, this linear correlation is valid independent of types of defects and the locations of substitutional sites. These results provide the possibility to apply local electronic descriptors for quantitative and efficient predictions on the solute-defect interactions and defect properties in alloys.


Sign in / Sign up

Export Citation Format

Share Document