airborne viruses
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 49)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Ramakrishna K ◽  
◽  
Chaya K ◽  
Rohit S Mane ◽  
◽  
...  

The objective of the current research is to validate the microbiological quality of Emitron against MS2 phage, Corona virus, bacteria, yeast, and molds. Unimech healthcare designed PMEE based Emitron which is mostly used to reduce the microbial count and virus count in an area. To perform microbiological testing of the Emitron, environmental monitoring was performed for MS2 phage, Corona virus, bacteria, yeast, and molds before and after treatment by settle plate method. Petri plates of sterilized Phage agar, SCDA and PDA media were prepared and exposed for environment monitoring before and after treatment by settle plate method. The phage agar and SCDA plates were incubated at 37°C for 72 hours and PDA plates incubated at 25°C for 5 days. Total of 99% reduction was reported in microbiology lab with respect to the microorganisms after installing Emitron. We can conclude that the Unimech healthcare’s Emitron is virus attenuation device so one can use it to purify the air and kill the viruses, bacteria, fungi, and other microbes.


2022 ◽  
Vol 1 (3) ◽  
pp. 1-4
Author(s):  
Ramakrishna K ◽  
◽  
Chaya K ◽  
Rohit S Mane ◽  
◽  
...  

The objective of the current research is to validate the microbiological quality of Emitron against MS2 phage, Corona virus, bacteria, yeast, and molds. Unimech healthcare designed PMEE based Emitron which is mostly used to reduce the microbial count and virus count in an area. To perform microbiological testing of the Emitron, environmental monitoring was performed for MS2 phage, Corona virus, bacteria, yeast, and molds before and after treatment by settle plate method. Petri plates of sterilized Phage agar, SCDA and PDA media were prepared and exposed for environment monitoring before and after treatment by settle plate method. The phage agar and SCDA plates were incubated at 37°C for 72 hours and PDA plates incubated at 25°C for 5 days. Total of 99% reduction was reported in microbiology lab with respect to the microorganisms after installing Emitron. We can conclude that the Unimech healthcare’s Emitron is virus attenuation device so one can use it to purify the air and kill the viruses, bacteria, fungi, and other microbes.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Jizhen Wang ◽  
Shaoyang Liu ◽  
Xu Yan ◽  
Zhan Jiang ◽  
Zijing Zhou ◽  
...  

Environmentally friendly face masks with high filtration efficiency are in urgent need to fight against the COVID-19 pandemic, as well as other airborne viruses, bacteria and particulate matters. In this study, coaxial electrospinning was employed to fabricate a lithium chloride enhanced cellulose acetate/thermoplastic polyurethanes (CA/TPU-LiCl) face mask nanofiber filtration membrane, which was biodegradable and reusable. The analysis results show that the CA/TPU-LiCl membrane had an excellent filtration performance: when the filtration efficiency reached 99.8%, the pressure drop was only 52 Pa. The membrane also had an outstanding reusability. The filtration performance maintained at 98.2% after 10 test cycles, and an alcohol immersion disinfection treatment showed no effect on its filtration performance. In summary, the CA/TPU-LiCl nanofiber membrane made in this work is a promising biodegradable and reusable filtration material with a wide range of potential applications, including high-performance face mask.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6999
Author(s):  
Priyabrata Pattanaik ◽  
William Holderbaum ◽  
Asimananda Khandual ◽  
Hara Prasada Tripathy

“Wear a mask. Save lives” is the slogan of WHO and all the government agencies over the world to the public. One of the most adopted prevention measures that can limit the spread of the airborne virus in the form of respiratory viral diseases, including the new strain of COVID-19, is wearing a proper mask. If the mask surface is heated to 65 to 70 °C, it could help potentially diminish any viruses or bacteria accumulated. The FAR-Ultraviolet -C (FAR-UV-C) dose for the influenza limit to 254 nm light is ~3 mJ/cm2/hour exposure is not harmful to the human skin and eyes. Here, we propose an intelligent mask served by FAR-UV-C and conducting a yarn-based heater that could potentially be activated in a controlled manner to kill the virus. The effective irradiation intensity for skin application would be under 0.1 µW/cm2. The exposure risk of UV-C is technically prevented by fabricating multi-layered fabrics with multiple functionalities. Along with experimental validation on bacterial filtration efficiency (BFE), tinker cad simulation for circuit design, and comsol multiphysics for temperature profile study, we probed Moisture Management Test (MMT) in addition with cytotoxicity risk by MTT Assay for survivability to ensure safer application potential. This novel proposed design with the germicidal combination of heating and FAR-UV-C models, described here, is promising in retaliating and combating any airborne viruses.


Author(s):  
Imen Assadi ◽  
Ahlem Guesmi ◽  
Oussama Baaloudj ◽  
Hichem Zeghioud ◽  
Walid Elfalleh ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ozgur Selimoglu

UV-C light is an important disinfection tool against airborne viruses, while also being harmful if the light reaches the human skin. Body-attached reflective flow-through optical enclosures can be used for isolating the UV-C light from the user as well as elevating the irradiance level. In this study, we explain why air-sterilizing light enclosures are more effective than the expectations by introducing a dose multiplication factor of 4. As a result of omnidirectional illumination, air sterilization becomes more effective than surface disinfection if similar irradiance levels are measured from the enclosure wall. The methodology is explained by the design of a portable enclosure device primarily targeting the COVID-19 virus, and disinfection effectiveness better than 99.5% is demonstrated by biological tests.


Author(s):  
Marcilio Jorge Fumagalli ◽  
Carlos Fabiano Capato ◽  
Luiza Antunes de Castro-Jorge ◽  
William Marciel de Souza ◽  
Eurico Arruda ◽  
...  

2021 ◽  
Vol 13 (21) ◽  
pp. 11968
Author(s):  
Mutaz Suleiman ◽  
Ahmed Elshaer ◽  
Muntasir Billah ◽  
Mohammed Bassuony

Modular construction methods have been widely used in the civil engineering industry due to ease of assembly, the convenience of design, and allowing for flexibility in placement while making the construction more sustainable. With the increasing number of COVID-19 cases, the capacity of the hospital is decreasing as more intensive care units (ICU) are allocated to COVID-19 cases. This limited capacity can be addressed by using modular construction to provide field hospitals. This paper adopts transient Lagrangian computational fluid dynamics simulations to investigate the importance of having an appropriate ventilation system in place to ensure sustainable infection control against airborne viruses and pathogens within a modular room. The performance of having a ventilation system using 10, 20, and 40 air changes per hour (ACH) was examined. In addition, different room configurations were also compared to provide useful guidelines for air conditioning units placement. It was determined that as the ACH rate increases while maintaining a direct flow field between the inlet and outlet, the rate of aerosol removal increases. Furthermore, the flowfield in which can be controlled by the placement of the inlet and outlet can impact the removal of aerosols, as it dictates how far the droplets travel before being removed from the enclosure.


2021 ◽  
pp. 101-121
Author(s):  
Dorothy H. Crawford

This chapter focuses on past emerging viruses. For our ancestors, it was their change in lifestyle from hunter-gatherer to farmer some 10,000 years ago that triggered an onslaught of new, emerging infectious diseases. The switch from the nomadic life to living in fixed communities, along with the change from hunting animals to their domestication, encouraged spillover of new viruses as well as other types of microbes. As such, the early farmers’ emerging viruses jumped from the animals they domesticated, while the cramped conditions of life in villages, and later towns, gave these viruses the opportunity to thrive in their new human host. This was the beginning of many of our acute childhood infections, so-called crowd diseases. The chapter looks at how these ancient afflictions have evolved over the intervening 10,000 years with a view to understanding how diseases like COVID-19 might evolve over time. It considers smallpox and measles, which are both highly infectious, lethal, airborne viruses, as well as polio, which is spread by faecal–oral contamination.


Sign in / Sign up

Export Citation Format

Share Document