scholarly journals Vortex pinning by meandering line defects in planar superconductors

2006 ◽  
Vol 73 (21) ◽  
Author(s):  
Eleni Katifori ◽  
David R. Nelson
Keyword(s):  
Author(s):  
Kenneth R. Lawless

One of the most important applications of the electron microscope in recent years has been to the observation of defects in crystals. Replica techniques have been widely utilized for many years for the observation of surface defects, but more recently the most striking use of the electron microscope has been for the direct observation of internal defects in crystals, utilizing the transmission of electrons through thin samples.Defects in crystals may be classified basically as point defects, line defects, and planar defects, all of which play an important role in determining the physical or chemical properties of a material. Point defects are of two types, either vacancies where individual atoms are missing from lattice sites, or interstitials where an atom is situated in between normal lattice sites. The so-called point defects most commonly observed are actually aggregates of either vacancies or interstitials. Details of crystal defects of this type are considered in the special session on “Irradiation Effects in Materials” and will not be considered in detail in this session.


APL Materials ◽  
2016 ◽  
Vol 4 (6) ◽  
pp. 061101 ◽  
Author(s):  
F. Rizzo ◽  
A. Augieri ◽  
A. Angrisani Armenio ◽  
V. Galluzzi ◽  
A. Mancini ◽  
...  

2013 ◽  
Vol 2013 (7) ◽  
Author(s):  
M. Billó ◽  
M. Caselle ◽  
D. Gaiotto ◽  
F. Gliozzi ◽  
M. Meineri ◽  
...  

2000 ◽  
Vol 61 (5) ◽  
pp. 3270-3273 ◽  
Author(s):  
S. Nakaharai ◽  
T. Ishiguro ◽  
S. Watauchi ◽  
J. Shimoyama ◽  
K. Kishio

2015 ◽  
Vol 6 (1) ◽  
pp. 51-55 ◽  
Author(s):  
D. Trimble ◽  
H. Mitrogiannopoulos ◽  
G. E. O'Donnell ◽  
S. McFadden

Abstract. Some aluminium alloys are difficult to join using traditional fusion (melting and solidification) welding techniques. Friction Stir Welding (FSW) is a solid-state welding technique that can join two plates of material without melting the workpiece material. This proecess uses a rotating tool to create the joint and it can be applied to alumium alloys in particular. Macrostructure, microstructure and micro hardness of friction stir welded AA2024-T3 joints were studied. The influence of tool pin profile on the microstructure and hardness of these joints was examined. Square, triflute and tapered cylinder pins were used and results from each weldment are reported. Vickers micro hardness tests and grain size measurements were taken from the transverse plane of welded samples. Distinct zones in the macrostructure were evident. The zones were identified by transitions in the microstructure and hardness of weld samples. The zones identified across the sample were the the unaffected parent metal, the Heat Affected Zone (HAZ), the Thermo-Mechanicaly Affected Zone (TMAZ), and the Nugget Zone (NZ). Measured hardness values varied through each FSW zone. The hardness in each zone was below that of the parent material. The HAZ had the lowest hardness across the weld profile for each pin type tested. The cylindrical pin consistently produced tunnel and joint-line defects. Pin profiles with flat surface features and/or flutes produced consolidated joints with no defects.


2014 ◽  
Vol 104 (9) ◽  
pp. 093102 ◽  
Author(s):  
Yinjun Huang ◽  
Shuze Zhu ◽  
Teng Li

2006 ◽  
Vol 955 ◽  
Author(s):  
Mo Ahoujja ◽  
S Elhamri ◽  
M Hogsed ◽  
Y. K. Yeo ◽  
R. L. Hengehold

ABSTRACTDeep levels in Si doped AlxGa1−xN samples, with Al mole fraction in the range of x = 0 to 0.30, grown by radio-frequency plasma activated molecular beam epitaxy on sapphire substrates were characterized by deep level transient spectroscopy (DLTS). DLTS measurements show two significant electron traps, P1 and P2, in AlGaN at all aluminum mole fractions. The electron trap, P2, appears to be a superposition of traps A and B , both of which are observed in GaN grown by various growth techniques and are thought to be related to VGa-shallow donor complexes. Trap P1 is related to line defects and N-related point defects. Both of these traps are distributed throughout the bulk of the epitaxial layer. An additional trap P0 which was observed in Al0.20Ga0.80N and Al0.30Ga0.70N is of unknown origin, but like P1 and P2, it exhibits dislocation-related capture kinetics. The activation energy measured from the conduction band of the defects is found to increase with Al mole content, a behavior consistent with other III-V semiconductors.


Sign in / Sign up

Export Citation Format

Share Document