Traps in Si-doped AlxGa1-xN Grown by Molecular Beam Epitaxy on Sapphire Characterized by Deep Level Transient Spectroscopy

2006 ◽  
Vol 955 ◽  
Author(s):  
Mo Ahoujja ◽  
S Elhamri ◽  
M Hogsed ◽  
Y. K. Yeo ◽  
R. L. Hengehold

ABSTRACTDeep levels in Si doped AlxGa1−xN samples, with Al mole fraction in the range of x = 0 to 0.30, grown by radio-frequency plasma activated molecular beam epitaxy on sapphire substrates were characterized by deep level transient spectroscopy (DLTS). DLTS measurements show two significant electron traps, P1 and P2, in AlGaN at all aluminum mole fractions. The electron trap, P2, appears to be a superposition of traps A and B , both of which are observed in GaN grown by various growth techniques and are thought to be related to VGa-shallow donor complexes. Trap P1 is related to line defects and N-related point defects. Both of these traps are distributed throughout the bulk of the epitaxial layer. An additional trap P0 which was observed in Al0.20Ga0.80N and Al0.30Ga0.70N is of unknown origin, but like P1 and P2, it exhibits dislocation-related capture kinetics. The activation energy measured from the conduction band of the defects is found to increase with Al mole content, a behavior consistent with other III-V semiconductors.

2011 ◽  
Vol 295-297 ◽  
pp. 777-780 ◽  
Author(s):  
M. Ajaz Un Nabi ◽  
M. Imran Arshad ◽  
Adnan Ali ◽  
M. Asghar ◽  
M. A Hasan

In this paper we have investigated the substrate-induced deep level defects in bulk GaN layers grown onp-silicon by molecular beam epitaxy. Representative deep level transient spectroscopy (DLTS) performed on Au-GaN/Si/Al devices displayed only one electron trap E1at 0.23 eV below the conduction band. Owing to out-diffusion mechanism; silicon diffuses into GaN layer from Si substrate maintained at 1050°C, E1level is therefore, attributed to the silicon-related defect. This argument is supported by growth of SiC on Si substrate maintained at 1050°C in MBE chamber using fullerene as a single evaporation source.


1987 ◽  
Vol 92 ◽  
Author(s):  
Akio Kitagawa ◽  
Yutaka Tokuda ◽  
Akira Usami ◽  
Takao Wada ◽  
Hiroyuki kano

ABSTRACTRapid thermal processing (RTP) using halogen lamps for a Si-doped molecular beam epitaxial (MBE) n-GaAs layers was investigated by deep level transient spectroscopy. RTP was performed at 700°C, 800°C and 900°C for 6 s. Two electron traps NI ( Ec-0.5-0.7eV) and EL2 (Ec - 0.82 eV) are produced by RTP at 800 and 900°C.The peculiar spatial variations of the Nl and EL2 concentration across the MBE GaAs films are observed. The larger concentrations of the trap N1 and EL2 are observed near the edge of the samples, and the minima of N1 and EL2 concentration lie between the center and the edge of the sample. It seems that these spatial variations of N1 and EL2 concentration are consistent with that of the thermal stress induced by RTP. Furthermore, the EL2 concentration near the edge of the sample is suppressed by the contact with the GaAs pieces on the edge around the sample during RTP.


2000 ◽  
Vol 5 (S1) ◽  
pp. 943-949 ◽  
Author(s):  
Z-Q. Fang ◽  
D. C. Look ◽  
Wook Kim ◽  
H. Morkoç

Deep centers in Si-doped n-GaN samples grown on sapphire by reactive molecular beam epitaxy, using different ammonia flow rates (AFRs), have been studied by deep level transient spectroscopy. In addition to five electron traps, which were also found in n-GaN layers grown by both metalorganic chemical-vapor deposition and hydride vapor-phase epitaxy, two new centers C1 (0.43-0.48 eV) and E1 (0.25 eV) have been observed. C1, whose parameters show strong electric-field effects and anomalous electron capture kinetics, might be associated with dislocations. E1, which is very dependent on the AFR, exhibits an activation energy close to that of a center created by electron irradiation and is believed to be a defect complex involving VN.


1999 ◽  
Vol 595 ◽  
Author(s):  
Z-Q. Fang ◽  
D. C. Look ◽  
Wook Kim ◽  
H. Morkoç

AbstractDeep centers in Si-doped n-GaN samples grown on sapphire by reactive molecular beam epitaxy, using different ammonia flow rates (AFRs), have been studied by deep level transient spectroscopy. In addition to five electron traps, which were also found in n-GaN layers grown by both metalorganic chemical-vapor deposition and hydride vapor-phase epitaxy, two new centers C1 (0.43-0.48 eV) and E1 (0.25 eV) have been observed. C1, whose parameters show strong electric-field effects and anomalous electron capture kinetics, might be associated with dislocations. E1, which is very dependent on the AFR, exhibits an activation energy close to that of a center created by electron irradiation and is believed to be a defect complex involving VN.


2004 ◽  
Vol 96 (12) ◽  
pp. 7332-7337 ◽  
Author(s):  
D. C. Oh ◽  
T. Takai ◽  
T. Hanada ◽  
M. W. Cho ◽  
T. Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document