Experimental and theoretical investigation of the conduction band edge ofGaNxP1−x

2006 ◽  
Vol 74 (24) ◽  
Author(s):  
M. Güngerich ◽  
P. J. Klar ◽  
W. Heimbrodt ◽  
G. Weiser ◽  
J. F. Geisz ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. R. Ashwin Kishore ◽  
R. Varunaa ◽  
Amirhossein Bayani ◽  
Karin Larsson

AbstractThe search for an active, stable, and abundant semiconductor-based bifunctional catalysts for solar hydrogen production will make a substantial impact on the sustainable development of the society that does not rely on fossil reserves. The photocatalytic water splitting mechanism on a $$\hbox {BeN}_{{2}}$$ BeN 2 monolayer has here been investigated by using state-of-the-art density functional theory calculations. For all possible reaction intermediates, the calculated changes in Gibbs free energy showed that the oxygen evolution reaction will occur at, and above, the potential of 2.06 V (against the NHE) as all elementary steps are exergonic. In the case of the hydrogen evolution reaction, a potential of 0.52 V, or above, was required to make the reaction take place spontaneously. Interestingly, the calculated valence band edge and conduction band edge positions for a $$\hbox {BeN}_{{2}}$$ BeN 2 monolayer are located at the potential of 2.60 V and 0.56 V, respectively. This indicates that the photo-generated holes in the valence band can oxidize water to oxygen, and the photo-generated electrons in the conduction band can spontaneously reduce water to hydrogen. Hence, the results from the present theoretical investigation show that the $$\hbox {BeN}_{{2}}$$ BeN 2 monolayer is an efficient bifunctional water-splitting catalyst, without the need for any co-catalyst.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 822
Author(s):  
Hyo-Jun Joo ◽  
Dae-Hwan Kim ◽  
Hyun-Seok Cha ◽  
Sang-Hun Song

We measured and analyzed the Hall offset voltages in InGaZnO thin-film transistors. The Hall offset voltages were found to decrease monotonously as the electron densities increased. We attributed the magnitude of the offset voltage to the misalignment in the longitudinal distance between the probing points and the electron density to Fermi energy of the two-dimensional electron system, which was verified by the coincidence of the Hall voltage with the perpendicular magnetic field in the tilted magnetic field. From these results, we deduced the combined conduction band edge energy profiles from the Hall offset voltages with the electron density variations for three samples with different threshold voltages. The extracted combined conduction band edge varied by a few tens of meV over a longitudinal distance of a few tenths of µm. This result is in good agreement with the value obtained from the analysis of percolation conduction.


ACS Nano ◽  
2011 ◽  
Vol 5 (7) ◽  
pp. 5888-5902 ◽  
Author(s):  
Jacek Jasieniak ◽  
Marco Califano ◽  
Scott E. Watkins

RSC Advances ◽  
2019 ◽  
Vol 9 (20) ◽  
pp. 11377-11384 ◽  
Author(s):  
Kaili Wei ◽  
Baolai Wang ◽  
Jiamin Hu ◽  
Fuming Chen ◽  
Qing Hao ◽  
...  

It's highly desired to design an effective Z-scheme photocatalyst with excellent charge transfer and separation, a more negative conduction band edge (ECB) than O2/·O2− (−0.33 eV) and a more positive valence band edge (EVB) than ·OH/OH− (+2.27 eV).


2005 ◽  
Vol 483-485 ◽  
pp. 559-562 ◽  
Author(s):  
Kun Yuan Gao ◽  
Thomas Seyller ◽  
Konstantin V. Emtsev ◽  
Lothar Ley ◽  
Florin Ciobanu ◽  
...  

Atomic Layer Deposited Al2O3 films on hydrogen-terminated 6H-SiC(0001) were annealed in hydrogen atmosphere and characterized by admittance spectroscopy measurement and photoelectron spectroscopy (PES). The resultant density of interface trap (Dit) from admittance spectroscopy measurement is reduced near mid gap, but increases strongly towards the conduction band edge. Systematic PES measurements show that hydrogen annealing introduces Si4+ as a new component besides Si0 and Si+. Using different electron escape depths for photon electrons, depth profiling of Si in its different oxidation states was performed. The result indicates the formation of a top SiO2 layer and a rougher interfacial layer containing more Si+ and Si4+ which could be responsible for the strong increase of Dit just below the conduction band edge.


1995 ◽  
Vol 382 ◽  
Author(s):  
R. Könenkamp ◽  
P. Hoyer

ABSTRACTWe report on the photoconductivity of thin films consisting of a porous nanocrystalline TiO2 matrix and quantum size PbS clusters adsorbed on the inner surfaces of theTiO2. The PbS clusters are typically a few nm in size and are not connected. Due to quantum confinement the bandgap of the clusters is widened to around 2 eV from the 0.41 eV value for PbS bulk. The clusters thus absorb in the visible spectrum. However, due to their spatial separation, photoconductance through the film requires carrier transfer through the TiO2 matrix. Our data show this to occur only for clusters <25 Å, for which the conduction band edge lies above the TiO2 conduction band edge. For larger clusters the band alignment at the TiO2/PbS interface appears to be unfavorable for carrier transfer; these clusters do not contributeto photoconduction.


Sign in / Sign up

Export Citation Format

Share Document