scholarly journals Probing parton distribution functions in massive lepton-pair production

1974 ◽  
Vol 10 (11) ◽  
pp. 3672-3684 ◽  
Author(s):  
Gilbert Chu ◽  
John F. Gunion
1987 ◽  
Vol 02 (04) ◽  
pp. 1413-1423 ◽  
Author(s):  
FREDRICK OLNESS ◽  
WU-KI TUNG

We examine the integrated rates and differential cross-sections for b-quark pair production and Drell-Yan processes at the SSC and the Tevatron colliders, and we determine their sensitivity to a range of possible small x behaviors for the parton distribution functions (PDF’s). We find that both the integrated rates and the differential distributions for the Drell-Yan process are very sensitive to the unknown small x behavior of the PDF’s; whereas, only the integrated rates can distinguish various input PDF’s in the b-pair production process. Experiments at the Tevatron can provide very useful information on small x physics if these two processes, especially Drell-Yan, can be measured.


1987 ◽  
Vol 02 (04) ◽  
pp. 1369-1387 ◽  
Author(s):  
Wu-Ki Tung

Some non-trivial features of the QCD-improved parton model relevant to applications on heavy particle production and semi-hard (small-x) processes of interest to collider physics are reviewed. The underlying ideas are illustrated by a simple example. Limitations of the naive parton formula as well as first order corrections and subtractions to it are dis-cussed in a quantitative way. The behavior of parton distribution functions at small x and for heavy quarks are discussed. Recent work on possible impact of unconventional small-x behavior of the parton distributions on small-x physics at SSC and Tevatron are summarized. The Drell-Yan process is found to be particularly sensitive to the small x dependence of parton distributions. Measurements of this process at the Tevatron can provide powerful constraints on the expected rates of semi-hard processes at the SSC.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
J. L. Gutiérrez Santiago ◽  
G. López Castro ◽  
P. Roig

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Miguel G. Echevarria ◽  
Zhong-Bo Kang ◽  
John Terry

Abstract We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of W/Z bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of W/Z vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.


2021 ◽  
Vol 264 ◽  
pp. 107995
Author(s):  
Stefano Carrazza ◽  
Juan M. Cruz-Martinez ◽  
Marco Rossi

2015 ◽  
Vol 37 ◽  
pp. 1560053
Author(s):  
Pedro Jimenez-Delgado

Reports on our latest extractions of parton distribution functions of the nucleon are given. First an overview of the recent JR14 upgrade of our unpolarized PDFs, including NNLO determinations of the strong coupling constant and a discussion of the role of the input scale in parton distribution analysis. In the second part of the talk recent results on the determination of spin-dependent PDFs from the JAM collaboration are reported, including a careful treatment of hadronic and nuclear corrections, as well as reports on the impact of present and future data in our understanding of the spin of the nucleon.


Sign in / Sign up

Export Citation Format

Share Document