scholarly journals Magnetogenesis from baryon asymmetry during an early matter dominated era

2021 ◽  
Vol 104 (11) ◽  
Author(s):  
Fatemeh Elahi ◽  
Hadi Mehrabpour
Keyword(s):  
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Zong-Gang Mou ◽  
Paul M. Saffin ◽  
Anders Tranberg

Abstract We perform large-scale real-time simulations of a bubble wall sweeping through an out-of-equilibrium plasma. The scenario we have in mind is the electroweak phase transition, which may be first order in extensions of the Standard Model, and produce such bubbles. The process may be responsible for baryogenesis and can generate a background of primordial cosmological gravitational waves. We study thermodynamic features of the plasma near the advancing wall, the generation of Chern-Simons number/Higgs winding number and consider the potential for CP-violation at the wall generating a baryon asymmetry. A number of technical details necessary for a proper numerical implementation are developed.


2019 ◽  
Vol 127 ◽  
pp. 02009
Author(s):  
Boris Shevtsov

Nonlinear oscillations in the dynamic system of gravitational and material fields are considered. The problems of singularities and caustics in gravity, expansion and baryon asymmetry of the Universe, wave prohibition of collapse into black holes, and failure of the Big Bang concept are discussed. It is assumed that the effects of the expansion of the Universe are coupling with the reverse collapse of dark matter. This hypothesis is used to substantiate the vortex and fractal structures in the distribution of matter. A system of equations is proposed for describing turbulent and fluctuation processes in gravitational and material fields. Estimates of the di usion parameters of such a system are made in comparison with the gravitational constant.


2017 ◽  
Vol 2017 (12) ◽  
pp. 011-011 ◽  
Author(s):  
Daniel Jiménez ◽  
Kohei Kamada ◽  
Kai Schmitz ◽  
Xun-Jie Xu

2006 ◽  
Vol 96 (4) ◽  
Author(s):  
Glennys R. Farrar ◽  
Gabrijela Zaharijas

1987 ◽  
Vol 197 (1-2) ◽  
pp. 49-54 ◽  
Author(s):  
J. Ambjørn ◽  
M. Laursen ◽  
M.E. Shaposhnikov

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Partha Konar ◽  
Ananya Mukherjee ◽  
Abhijit Kumar Saha ◽  
Sudipta Show

Abstract We propose an appealing alternative scenario of leptogenesis assisted by dark sector which leads to the baryon asymmetry of the Universe satisfying all theoretical and experimental constraints. The dark sector carries a non minimal set up of singlet doublet fermionic dark matter extended with copies of a real singlet scalar field. A small Majorana mass term for the singlet dark fermion, in addition to the typical Dirac term, provides the more favourable dark matter of pseudo-Dirac type, capable of escaping the direct search. Such a construction also offers a formidable scope to radiative generation of active neutrino masses. In the presence of a (non)standard thermal history of the Universe, we perform the detailed dark matter phenomenology adopting the suitable benchmark scenarios, consistent with direct detection and neutrino oscillations data. Besides, we have demonstrated that the singlet scalars can go through CP-violating out of equilibrium decay, producing an ample amount of lepton asymmetry. Such an asymmetry then gets converted into the observed baryon asymmetry of the Universe through the non-perturbative sphaleron processes owing to the presence of the alternative cosmological background considered here. Unconventional thermal history of the Universe can thus aspire to lend a critical role both in the context of dark matter as well as in realizing baryogenesis.


2015 ◽  
Vol 93 (12) ◽  
pp. 1561-1565
Author(s):  
Ng. K. Francis

We construct the neutrino mass models with non-vanishing θ13 and estimate the baryon asymmetry of the universe and subsequently derive the constraints on the inflaton mass and the reheating temperature after inflation. The great discovery of this decade, the detection of Higgs boson of mass 126 GeV and nonzero θ13, makes leptogenesis all the more exciting. Besides, the neutrino mass model is compatible with inflaton mass 1010–1013 GeV corresponding to reheating temperature TR ∼ 105–107 GeV to overcome the gravitino constraint in supersymmetry and big bang nucleosynthesis. When Daya Bay data θ13 ≈ 9° is included in the model, τ predominates over e and μ contributions, which are indeed a good sign. It is shown that neutrino mass models for a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.


1994 ◽  
Vol 49 (12) ◽  
pp. 6394-6409 ◽  
Author(s):  
James M. Cline ◽  
Kimmo Kainulainen ◽  
Keith A. Olive
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document