Gauge theories of massive vector fields without scalar fields

1977 ◽  
Vol 16 (4) ◽  
pp. 1022-1025
Author(s):  
Deboijt Barua ◽  
Suraj N. Gupta
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Soumyadeep Chaudhuri ◽  
Eliezer Rabinovici

Abstract Considering marginally relevant and relevant deformations of the weakly coupled (3 + 1)-dimensional large N conformal gauge theories introduced in [1], we study the patterns of phase transitions in these systems that lead to a symmetry-broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the N → ∞ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. As shown in [1], in certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global ℤ2 or U(1) symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the squares of the masses added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the N → ∞ limit. Most of them are found in a reliable weak coupling regime and for others we present qualitative arguments.


2002 ◽  
Vol 17 (16) ◽  
pp. 2191-2210 ◽  
Author(s):  
C. BIZDADEA ◽  
E. M. CIOROIANU ◽  
S. O. SALIU

Consistent couplings among a set of scalar fields, two types of one-forms and a system of two-forms are investigated in the light of the Hamiltonian BRST cohomology, giving a four-dimensional nonlinear gauge theory. The emerging interactions deform the first-class constraints, the Hamiltonian gauge algebra, as well as the reducibility relations.


1976 ◽  
Vol 7 (4) ◽  
pp. 361-369
Author(s):  
Robert W. Lind
Keyword(s):  

Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter discusses classical fields in an arbitrary Riemann spacetime. General considerations are followed by the formulation of scalar fields with non-minimal coupling. Spontaneous symmetry breaking in curved space is shown to provide the induced gravity action with a cosmological constant. The construction of spinor fields in curved spacetime is based on the notions of group theory from Part I and on the local Lorentz invariance. Massless vector fields (massless vector gauge fields) are described and the interactions between scalar, fermion and gauge fields formulated. A detailed discussion of classical conformal transformations and conformal symmetry for both matter fields and vacuum action is also provided.


1970 ◽  
Vol 160 ◽  
pp. 147 ◽  
Author(s):  
Lane P. Hughston ◽  
Kenneth C. Jacobs

2019 ◽  
Vol 34 (18) ◽  
pp. 1950138 ◽  
Author(s):  
Steven Casper ◽  
William Cottrell ◽  
Akikazu Hashimoto ◽  
Andrew Loveridge ◽  
Duncan Pettengill

Scalar fields on the bulk side of AdS/CFT correspondence can be assigned unconventional boundary conditions related to the conventional one by Legendre transform. One can further perform double trace deformations which relate the two boundary conditions via renormalization group flow. Thinking of these operators as S and T transformations, respectively, we explore the SL(2, R) family of models which naively emerges from repeatedly applying these operations. Depending on the parameters, the effective masses vary and can render the theory unstable. However, unlike in the SL(2, Z) structure previously seen in the context of vector fields in AdS4, some of the features arising from this exercise, such as the vacuum susceptibility, turns out to be scheme dependent. We explain how scheme independent physical content can be extracted in spite of some degree of scheme dependence in certain quantities.


1998 ◽  
Vol 13 (18) ◽  
pp. 3101-3120 ◽  
Author(s):  
ROBERT MARNELIUS ◽  
IKUO S. SOGAMI

A previously proposed generalized BRST quantization on inner product spaces for second class constraints is further developed through applications. This BRST method involves a conserved generalized BRST charge Q which is not nilpotent, Q2≠0, but which satisfies Q=δ+δ†, δ2=0, and by means of which physical states are obtained from the projection δ| ph >=δ†| ph >=0. A simple model is analyzed in detail from which some basic properties and necessary ingredients are extracted. The method is then applied to a massive vector field. An effective theory is derived which is close to that of the Stückelberg model. However, since the scalar field here is introduced in order to have inner product solutions, a massive Yang–Mills theory with polynomial interaction terms might be possible to cosntruct.


Sign in / Sign up

Export Citation Format

Share Document