scholarly journals Dark energy and supermassive black holes

2004 ◽  
Vol 70 (6) ◽  
Author(s):  
Pedro F. González-Díaz
2019 ◽  
Vol 487 (3) ◽  
pp. 3650-3663 ◽  
Author(s):  
J K Hoormann ◽  
P Martini ◽  
T M Davis ◽  
A King ◽  
C Lidman ◽  
...  

ABSTRACT Black hole mass measurements outside the local Universe are critically important to derive the growth of supermassive black holes over cosmic time, and to study the interplay between black hole growth and galaxy evolution. In this paper, we present two measurements of supermassive black hole masses from reverberation mapping (RM) of the broad C iv emission line. These measurements are based on multiyear photometry and spectroscopy from the Dark Energy Survey Supernova Program (DES-SN) and the Australian Dark Energy Survey (OzDES), which together constitute the OzDES RM Program. The observed reverberation lag between the DES continuum photometry and the OzDES emission line fluxes is measured to be $358^{+126}_{-123}$ and $343^{+58}_{-84}$ d for two quasars at redshifts of 1.905 and 2.593, respectively. The corresponding masses of the two supermassive black holes are 4.4 × 109 and 3.3 × 109 M⊙, which are among the highest redshift and highest mass black holes measured to date with RM studies. We use these new measurements to better determine the C iv radius−luminosity relationship for high-luminosity quasars, which is fundamental to many quasar black hole mass estimates and demographic studies.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 279
Author(s):  
Zdeněk Stuchlík ◽  
Jaroslav Vrba

We study epicyclic oscillatory motion along circular geodesics of the Simpson–Visser meta-geometry describing in a unique way regular black-bounce black holes and reflection-symmetric wormholes by using a length parameter l. We give the frequencies of the orbital and epicyclic motion in a Keplerian disc with inner edge at the innermost circular geodesic located above the black hole outer horizon or on the our side of the wormhole. We use these frequencies in the epicyclic resonance version of the so-called geodesic models of high-frequency quasi-periodic oscillations (HF QPOs) observed in microquasars and around supermassive black holes in active galactic nuclei to test the ability of this meta-geometry to improve the fitting of HF QPOs observational data from the surrounding of supermassive black holes. We demonstrate that this is really possible for wormholes with sufficiently high length parameter l.


2012 ◽  
Vol 8 (S290) ◽  
pp. 259-260 ◽  
Author(s):  
Yan-Rong Li ◽  
Jian-Min Wang ◽  
Luis C. Ho

AbstractWe derive the mass function of supermassive black holes (SMBHs) over the redshift range 0 > z ≲ 2, using the latest deep luminosity and mass functions of field galaxies. Applying this mass function, combined with the bolometric luminosity function of active galactic nuclei (AGNs), into the the continuity equation of SMBH number density, we explicitly obtain the mass-dependent cosmological evolution of the radiative efficiency for accretion. We suggest that the accretion history of SMBHs and their spins evolve in two distinct regimes: an early phase of prolonged accretion, plausibly driven by major mergers, during which the black hole spins up, then switching to a period of random, episodic accretion, governed by minor mergers and internal secular processes, during which the hole spins down. The transition epoch depends on mass, mirroring other evidence for “cosmic downsizing” in the AGN population.


2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.


2014 ◽  
Vol 54 (7) ◽  
pp. 1448-1457 ◽  
Author(s):  
P. Jovanović ◽  
V. Borka Jovanović ◽  
D. Borka ◽  
T. Bogdanović

2008 ◽  
Author(s):  
Smita Mathur ◽  
Himel Ghosh ◽  
Laura Ferrarese ◽  
Fabrizio Fiore ◽  
Sandip K. Chakrabarti ◽  
...  

2021 ◽  
Vol 502 (2) ◽  
pp. 2682-2700
Author(s):  
Abbas Askar ◽  
Melvyn B Davies ◽  
Ross P Church

ABSTRACT Supermassive black holes (SMBHs) are found in most galactic nuclei. A significant fraction of these nuclei also contains a nuclear stellar cluster (NSC) surrounding the SMBH. In this paper, we consider the idea that the NSC forms first, from the merger of several stellar clusters that may contain intermediate-mass black holes (IMBHs). These IMBHs can subsequently grow in the NSC and form an SMBH. We carry out N-body simulations of the simultaneous merger of three stellar clusters to form an NSC, and investigate the outcome of simulated runs containing zero, one, two, and three IMBHs. We find that IMBHs can efficiently sink to the centre of the merged cluster. If multiple merging clusters contain an IMBH, we find that an IMBH binary is likely to form and subsequently merge by gravitational wave emission. We show that these mergers are catalyzed by dynamical interactions with surrounding stars, which systematically harden the binary and increase its orbital eccentricity. The seed SMBH will be ejected from the NSC by the recoil kick produced when two IMBHs merge, if their mass ratio q ≳ 0.15. If the seed is ejected then no SMBH will form in the NSC. This is a natural pathway to explain those galactic nuclei that contain an NSC but apparently lack an SMBH, such as M33. However, if an IMBH is retained then it can seed the growth of an SMBH through gas accretion and tidal disruption of stars.


Sign in / Sign up

Export Citation Format

Share Document