scholarly journals Hawking temperature of constant curvature black holes

2011 ◽  
Vol 83 (10) ◽  
Author(s):  
Rong-Gen Cai ◽  
Yun Soo Myung
2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950057 ◽  
Author(s):  
Wajiha Javed ◽  
Rimsha Babar ◽  
Ali Övgün

We analyze the effect of the generalized uncertainty principle (GUP) on the Hawking radiation from the hairy black hole in U(1) gauge-invariant scalar–vector–tensor theory by utilizing the semiclassical Hamilton–Jacobi method. To do so, we evaluate the tunneling probabilities and Hawking temperature for scalar and fermion particles for the given spacetime of the black holes with cubic and quartic interactions. For this purpose, we utilize the modified Klein–Gordon equation for the Boson particles and then Dirac equations for the fermion particles, respectively. Next, we examine that the Hawking temperature of the black holes do not depend on the properties of tunneling particles. Moreover, we present the corrected Hawking temperature of scalar and fermion particles which look similar in both interactions, but there are different mass and momentum relationships for scalar and fermion particles in cubic and quartic interactions.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


2013 ◽  
Vol 91 (1) ◽  
pp. 64-70 ◽  
Author(s):  
J. Sadeghi ◽  
A. Banijamali ◽  
E. Reisi

In this paper, using the Hamilton–Jacobi method we first calculate the Hawking temperature for a Horava–Lifshitz black hole. Then by utilizing the radial null geodesic method we obtain the entropy of such a black hole in four-dimensional space–time. We also consider the effect of back reaction on the surface gravity and compute modifications of entropy and Hawking temperature because of such an effect. Our calculations are for two kinds of Horava–Lifshitz black holes: Kehagias–Sfetsos and Lu–Mei–Pope.


2017 ◽  
Vol 32 (25) ◽  
pp. 1750130 ◽  
Author(s):  
Samuel Kováčik

We study a black hole with a blurred mass density instead of a singular one, which is caused by the noncommutativity of three-space. Depending on its mass, such object has either none, one or two event horizons. It possesses properties, which become important on a microscopic scale, in particular, the Hawking temperature does not increase indefinitely as the mass goes to zero, but vanishes instead. Such frozen and extremely dense pieces of matter are good dark matter candidates.


2012 ◽  
Vol 27 (01) ◽  
pp. 1250002 ◽  
Author(s):  
HUAIFAN LI ◽  
BIN HU

We established the equivalence between the local Hawking temperature measured by the time-like Killing observer located at some positions r with finite distances from the outer horizon r+ in the five-dimensional spinning black hole space with both negative and positive constant curvature, and the Unruh temperature measured by the Rindler observer with constant acceleration in the six-dimensional flat space by employing the globally embedding approach.


Author(s):  
Riasat Ali ◽  
Rimsha Babar ◽  
Muhammad Asgher ◽  
Syed Asif Ali Shah

This paper provides an extension for Hawking temperature of Reissner–Nordström-de Sitter (RN-DS) black hole (BH) with global monopole as well as [Formula: see text]D charged black hole. We consider the black holes metric and investigate the effects of quantum gravity ([Formula: see text]) on Hawking radiation. We investigate the charged boson particles tunneling through the horizon of black holes by using the Hamilton–Jacobi ansatz phenomenon. In our investigation, we study the quantum radiation to analyze the Lagrangian wave equation with generalized uncertainty principle and calculate the modified Hawking temperatures for black holes. Furthermore, we analyze the charge and correction parameter effects on the modified Hawking temperature and examine the stable and unstable condition of RN-DS BH with global monopole as well as [Formula: see text]D charged black hole.


Sign in / Sign up

Export Citation Format

Share Document