scholarly journals Anomalous transport of a classical wave-particle entity in a tilted potential

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Rahil N. Valani
Author(s):  
Kamlesh Dashora ◽  
Shailendra Saraf ◽  
Swarnalata Saraf

Sustained released tablets of diclofenac sodium (DIC) and tizanidine hydrochloride (TIZ) were prepared by using different proportions of cellulose acetate (CA) as the retardant material. Nine formulations of tablets having different proportion of microparticles developed by varied proportions of polymer: drug ratio ‘’i.e.’’; 1:9 -1:3 for DIC and 1:1 – 3:1 for TIZ. Each tablet contained equivalent to 100 mg of DIC and 6mg of TIZ. The prepared microparticles were white, free flowing and spherical in shape (SEM study), with  the particle size varying from 78.8±1.94 to 103.33±1.28 µm and 175.92± 9.82 to 194.94±14.28µm for DIC  and TIZ, respectively.  The first order rate constant K1 of formulations were found to be in the range of  K1 = 0.117-0.272 and 0.083- 0.189 %hr-1for DIC and TIZ, respectively. The value of exponent coefficient (n) was found to be in the range of 0.6328-0.9412  and 0.8589-1.1954 for DIC and TIZ respectively indicates anomalous  to  non anomalous transport type of diffusions among different formulations


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clément Dutreix ◽  
Matthieu Bellec ◽  
Pierre Delplace ◽  
Fabrice Mortessagne

AbstractPhase singularities appear ubiquitously in wavefields, regardless of the wave equation. Such topological defects can lead to wavefront dislocations, as observed in a humongous number of classical wave experiments. Phase singularities of wave functions are also at the heart of the topological classification of the gapped phases of matter. Despite identical singular features, topological insulators and topological defects in waves remain two distinct fields. Realising 1D microwave insulators, we experimentally observe a wavefront dislocation – a 2D phase singularity – in the local density of states when the systems undergo a topological phase transition. We show theoretically that the change in the number of interference fringes at the transition reveals the topological index that characterises the band topology in the insulator.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Mamiya Kawaguchi ◽  
Ken Kikuchi

2006 ◽  
Vol 04 (05) ◽  
pp. 815-825 ◽  
Author(s):  
APOORVA PATEL

Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.


2005 ◽  
Vol 128 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gaelle Duclos ◽  
Aurelien Babarit ◽  
Alain H. Clément

Considered as a source of renewable energy, wave is a resource featuring high variability at all time scales. Furthermore wave climate also changes significantly from place to place. Wave energy converters are very often tuned to suit the more frequent significant wave period at the project site. In this paper we show that optimizing the device necessitates accounting for all possible wave conditions weighted by their annual occurrence frequency, as generally given by the classical wave climate scatter diagrams. A generic and very simple wave energy converter is considered here. It is shown how the optimal parameters can be different considering whether all wave conditions are accounted for or not, whether the device is controlled or not, whether the productive motion is limited or not. We also show how they depend on the area where the device is to be deployed, by applying the same method to three sites with very different wave climate.


Sign in / Sign up

Export Citation Format

Share Document