Erratum: Regularized thin-fiber model for nanofiber formation by centrifugal spinning [Phys. Rev. E89, 023011 (2014)]

2014 ◽  
Vol 89 (5) ◽  
Author(s):  
S. M. Taghavi ◽  
R. G. Larson
2021 ◽  
Author(s):  
Martina Rihova ◽  
Oksana Yurkevich ◽  
Martin Motola ◽  
Ludek Hromadko ◽  
Zdeněk Spotz ◽  
...  

This work describes the synthesis of highly photocatalytically active TiO2 tubes (TiTBs) by combining centrifugal spinning and atomic layer deposition (ALD). Poly(vinyl pyrrolidone) (PVP) fibers were first produced by centrifugal...


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1546
Author(s):  
Zhen Li ◽  
Shunqi Mei ◽  
Yajie Dong ◽  
Fenghua She ◽  
Puwang Li ◽  
...  

Core-shell nanofibers have great potential for bio-medical applications such as wound healing dressings where multiple drugs and growth factors are expected to be delivered at different healing phases. Compared to monoaxial nanofibers, core-shell nanofibers can control the drug release profile easier, providing sustainable and effective drugs and growth factors for wound healing. However, it is challenging to produce core-shell structured nanofibers with a high production rate at low energy consumption. Co-axial centrifugal spinning is an alternative method to address the above limitations to produce core-shell nanofibers effectively. In this study, a co-axial centrifugal spinning device was designed and assembled to produce core-shell nanofibers for controlling the release rate of ibuprofen and hEGF in inflammation and proliferation phases during the wound healing process. Core-shell structured nanofibers were confirmed by TEM. This work demonstrated that the co-axial centrifugal spinning is a high productivity process that can produce materials with a 3D environment mimicking natural tissue scaffold, and the specific drug can be loaded into different layers to control the drug release rate to improve the drug efficiency and promote wound healing.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Mojgan Sabet ◽  
Ziad Tarazi ◽  
Debora Rubio-Aparicio ◽  
Thomas G. Nolan ◽  
Jonathan Parkinson ◽  
...  

ABSTRACT The objective of these studies was to evaluate the exposures of meropenem and vaborbactam that would produce antibacterial activity and prevent resistance development in carbapenem-resistant Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains when tested at an inoculum of 108 CFU/ml. Thirteen K. pneumoniae isolates, three Enterobacter cloacae isolates, and one Escherichia coli isolate were examined in an in vitro hollow-fiber model over 32 h. Simulated dosage regimens of 1 to 2 g of meropenem with 1 to 2 g of vaborbactam, with meropenem administered every 8 h by a 3-h infusion based on phase 1 or phase 3 patient pharmacokinetic data, were studied in the model. A dosage of 2 g of meropenem in combination with 2 g of vaborbactam was bactericidal against K. pneumoniae, E. cloacae, and E. coli strains, with meropenem-vaborbactam MICs of up to 8 mg/liter. When the vaborbactam exposure was adjusted to the levels observed in patients enrolled in phase 3 trials (24-h free AUC, ∼550 mg · h/liter, versus 320 mg · h/liter in the phase 1 studies), 2 g of meropenem with 2 g of vaborbactam was also bactericidal against strains with meropenem-vaborbactam MICs of 16 mg/liter. In addition, this level of vaborbactam also suppressed the development of resistance observed using phase 1 exposures. In this pharmacodynamic model, exposures similar to 2 g of meropenem in combination with 2 g of vaborbactam administered every 8 h by a 3-h infusion in phase 3 trials produced antibacterial activity and suppressed the development of resistance against carbapenem-resistant KPC-producing strains of Enterobacteriaceae.


Author(s):  
Takao Kumazawa ◽  
Taijiro Hirano ◽  
Eiko Tadaki ◽  
Yasuko Kozaki ◽  
Kunihiro Eguchi
Keyword(s):  

2013 ◽  
Vol 19 (12) ◽  
pp. 2802-2809 ◽  
Author(s):  
Bret Jackson ◽  
Tung Yuen Lau ◽  
David Schroeder ◽  
Kimani C. Toussaint ◽  
Daniel F. Keefe

Sign in / Sign up

Export Citation Format

Share Document